def train(file_path, P, frac):
    target, df = create_dataset(file_path)
    i = 0
    rolling_test = []
    train_size = int(frac * df.shape[0])
    starts = [pd.Timestamp(df.index[0]) for _ in range(len(target))]
    delay = 0
    grouper_train = MultivariateGrouper(max_target_dim=df.shape[0])
    grouper_test = MultivariateGrouper(max_target_dim=df.shape[0])

    train_ds = ListDataset([{
        FieldName.TARGET: targets,
        FieldName.START: start
    } for (targets, start) in zip(target[:, 0:train_size - P], starts)],
                           freq='1B')
    train_ds = grouper_train(train_ds)

    while train_size + delay < df.shape[0]:
        delay = int(P) * i
        test_ds = ListDataset([{
            FieldName.TARGET: targets,
            FieldName.START: start
        } for (targets, start) in zip(target[:, 0:train_size + delay], starts)
                               ],
                              freq='1B')
        test_ds = grouper_test(test_ds)
        rolling_test.append(test_ds)
        i += 1
    estimator = GPVAREstimator(prediction_length=pred_len,
                               context_length=6,
                               freq='1B',
                               target_dim=df.shape[1],
                               trainer=Trainer(ctx="cpu", epochs=200))
    return train_ds, rolling_test, estimator, train_size
Exemple #2
0
def load_multivariate_constant_dataset():
    metadata, train_ds, test_ds = constant_dataset()
    grouper_train = MultivariateGrouper(max_target_dim=NUM_SERIES)
    grouper_test = MultivariateGrouper(max_target_dim=NUM_SERIES)
    return TrainDatasets(
        metadata=metadata,
        train=grouper_train(train_ds),
        test=grouper_test(test_ds),
    )
Exemple #3
0
def load_multivariate_datasets(path: Path) -> TrainDatasets:
    ds = load_datasets(path / "metadata", path / "train", path / "test")
    target_dim = ds.metadata.feat_static_cat[0].cardinality
    grouper_train = MultivariateGrouper(max_target_dim=target_dim)
    grouper_test = MultivariateGrouper(max_target_dim=target_dim)
    return TrainDatasets(
        metadata=ds.metadata,
        train=grouper_train(ds.train),
        test=grouper_test(ds.test),
    )
def load_dataset(dataset_name: str, path: Path) -> TrainDatasets:
    dataset = get_dataset(dataset_name, path, regenerate=False)
    target_dim = dataset.metadata.feat_static_cat[0].cardinality
    grouper_train = MultivariateGrouper(max_target_dim=target_dim)
    grouper_test = MultivariateGrouper(max_target_dim=target_dim)
    return TrainDatasets(
        metadata=dataset.metadata,
        train=grouper_train(dataset.train),
        test=grouper_test(dataset.test),
    )
Exemple #5
0
def load_multivariate_constant_dataset():
    dataset_info, train_ds, test_ds = constant_dataset()
    grouper_train = MultivariateGrouper(max_target_dim=10)
    grouper_test = MultivariateGrouper(num_test_dates=1, max_target_dim=10)
    metadata = dataset_info.metadata
    metadata.prediction_length = dataset_info.prediction_length
    return TrainDatasets(
        metadata=dataset_info.metadata,
        train=grouper_train(train_ds),
        test=grouper_test(test_ds),
    )
Exemple #6
0
def test_multivariate_grouper_train(univariate_ts, multivariate_ts,
                                    train_fill_rule) -> None:
    univariate_ds = ListDataset(univariate_ts, freq="1D")
    multivariate_ds = ListDataset(multivariate_ts,
                                  freq="1D",
                                  one_dim_target=False)

    grouper = MultivariateGrouper(train_fill_rule=train_fill_rule)
    assert (list(grouper(univariate_ds))[0]["target"] == list(multivariate_ds)
            [0]["target"]).all()

    assert (list(grouper(univariate_ds))[0]["start"] == list(multivariate_ds)
            [0]["start"])
Exemple #7
0
def test_multivariate_grouper_test(univariate_ts, multivariate_ts,
                                   test_fill_rule, max_target_dim) -> None:
    univariate_ds = ListDataset(univariate_ts, freq="1D")
    multivariate_ds = ListDataset(multivariate_ts,
                                  freq="1D",
                                  one_dim_target=False)

    grouper = MultivariateGrouper(
        test_fill_rule=test_fill_rule,
        num_test_dates=2,
        max_target_dim=max_target_dim,
    )

    for grouped_data, multivariate_data in zip(grouper(univariate_ds),
                                               multivariate_ds):
        assert (grouped_data["target"] == multivariate_data["target"]).all()

        assert grouped_data["start"] == multivariate_data["start"]
Exemple #8
0
def train(args):
    freq = args.freq.replace('"', '')
    prediction_length = args.prediction_length
    context_length = args.context_length
    use_feat_dynamic_real = args.use_feat_dynamic_real
    use_past_feat_dynamic_real = args.use_past_feat_dynamic_real
    use_feat_static_cat = args.use_feat_static_cat
    use_log1p = args.use_log1p
    
    print('freq:', freq)
    print('prediction_length:', prediction_length)
    print('context_length:', context_length)
    print('use_feat_dynamic_real:', use_feat_dynamic_real)
    print('use_past_feat_dynamic_real:', use_past_feat_dynamic_real)
    print('use_feat_static_cat:', use_feat_static_cat)
    print('use_log1p:', use_log1p)
    
    batch_size = args.batch_size
    print('batch_size:', batch_size)

    train = load_json(os.path.join(args.train, 'train_'+freq+'.json'))
    test = load_json(os.path.join(args.test, 'test_'+freq+'.json'))
    
    num_timeseries = len(train)
    print('num_timeseries:', num_timeseries)

    train_ds = ListDataset(parse_data(train, use_log1p=use_log1p), freq=freq)
    test_ds = ListDataset(parse_data(test, use_log1p=use_log1p), freq=freq)
    
    predictor = None
    
    trainer= Trainer(ctx="cpu", 
                    epochs=args.epochs, 
                    num_batches_per_epoch=args.num_batches_per_epoch,
                    learning_rate=args.learning_rate, 
                    learning_rate_decay_factor=args.learning_rate_decay_factor,
                    patience=args.patience,
                    minimum_learning_rate=args.minimum_learning_rate,
                    clip_gradient=args.clip_gradient,
                    weight_decay=args.weight_decay,
                    init=args.init.replace('"', ''),
                    hybridize=args.hybridize)
    print('trainer:', trainer)
    
    cardinality = None
    if args.cardinality != '':
        cardinality = args.cardinality.replace('"', '').replace(' ', '').replace('[', '').replace(']', '').split(',')
        for i in range(len(cardinality)):
            cardinality[i] = int(cardinality[i])
    print('cardinality:', cardinality)
    
    embedding_dimension = [min(50, (cat+1)//2) for cat in cardinality] if cardinality is not None else None
    print('embedding_dimension:', embedding_dimension)
    
    algo_name = args.algo_name.replace('"', '')
    print('algo_name:', algo_name)
    
    if algo_name == 'CanonicalRNN':
        estimator = CanonicalRNNEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            num_layers=5, 
            num_cells=50, 
            cell_type='lstm', 
            num_parallel_samples=100,
            cardinality=cardinality,
            embedding_dimension=10,
        )
    elif algo_name == 'DeepFactor':
        estimator = DeepFactorEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            cardinality=cardinality,
            embedding_dimension=10,
        )
    elif algo_name == 'DeepAR':
        estimator = DeepAREstimator(
            freq = freq,  # – Frequency of the data to train on and predict
            prediction_length = prediction_length,  # – Length of the prediction horizon
            trainer = trainer,  # – Trainer object to be used (default: Trainer())
            context_length = context_length,  # – Number of steps to unroll the RNN for before computing predictions (default: None, in which case context_length = prediction_length)
            num_layers = 2,  # – Number of RNN layers (default: 2)
            num_cells = 40,  # – Number of RNN cells for each layer (default: 40)
            cell_type = 'lstm',  # – Type of recurrent cells to use (available: ‘lstm’ or ‘gru’; default: ‘lstm’)
            dropoutcell_type = 'ZoneoutCell',  # – Type of dropout cells to use (available: ‘ZoneoutCell’, ‘RNNZoneoutCell’, ‘VariationalDropoutCell’ or ‘VariationalZoneoutCell’; default: ‘ZoneoutCell’)
            dropout_rate = 0.1,  # – Dropout regularization parameter (default: 0.1)
            use_feat_dynamic_real = use_feat_dynamic_real,  # – Whether to use the feat_dynamic_real field from the data (default: False)
            use_feat_static_cat = use_feat_static_cat,  # – Whether to use the feat_static_cat field from the data (default: False)
            use_feat_static_real = False,  # – Whether to use the feat_static_real field from the data (default: False)
            cardinality = cardinality,  # – Number of values of each categorical feature. This must be set if use_feat_static_cat == True (default: None)
            embedding_dimension = embedding_dimension,  # – Dimension of the embeddings for categorical features (default: [min(50, (cat+1)//2) for cat in cardinality])
        #     distr_output = StudentTOutput(),  # – Distribution to use to evaluate observations and sample predictions (default: StudentTOutput())
        #     scaling = True,  # – Whether to automatically scale the target values (default: true)
        #     lags_seq = None,  # – Indices of the lagged target values to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq)
        #     time_features = None,  # – Time features to use as inputs of the RNN (default: None, in which case these are automatically determined based on freq)
        #     num_parallel_samples = 100,  # – Number of evaluation samples per time series to increase parallelism during inference. This is a model optimization that does not affect the accuracy (default: 100)
        #     imputation_method = None,  # – One of the methods from ImputationStrategy
        #     train_sampler = None,  # – Controls the sampling of windows during training.
        #     validation_sampler = None,  # – Controls the sampling of windows during validation.
        #     alpha = None,  # – The scaling coefficient of the activation regularization
        #     beta = None,  # – The scaling coefficient of the temporal activation regularization
            batch_size = batch_size,  # – The size of the batches to be used training and prediction.
        #     minimum_scale = None,  # – The minimum scale that is returned by the MeanScaler
        #     default_scale = None,  # – Default scale that is applied if the context length window is completely unobserved. If not set, the scale in this case will be the mean scale in the batch.
        #     impute_missing_values = None,  # – Whether to impute the missing values during training by using the current model parameters. Recommended if the dataset contains many missing values. However, this is a lot slower than the default mode.
        #     num_imputation_samples = None,  # – How many samples to use to impute values when impute_missing_values=True
        )
    elif algo_name == 'DeepState':
        estimator = DeepStateEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=trainer,
            batch_size=batch_size,
            use_feat_dynamic_real=use_feat_dynamic_real,
            use_feat_static_cat=use_feat_static_cat,
            cardinality=cardinality,
        )
    elif algo_name == 'DeepVAR':
        estimator = DeepVAREstimator(  # use multi
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            target_dim=96,
        )
    elif algo_name == 'GaussianProcess':
#         # TODO
#         estimator = GaussianProcessEstimator(
#             freq=freq,
#             prediction_length=prediction_length,
#             context_length=context_length,
#             trainer=trainer,
#             batch_size=batch_size,
#             cardinality=num_timeseries,
#         )
        pass
    elif algo_name == 'GPVAR':
        estimator = GPVAREstimator(  # use multi
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            target_dim=96,
        )
    elif algo_name == 'LSTNet':
        estimator = LSTNetEstimator(  # use multi
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            num_series=96,
            skip_size=4,
            ar_window=4,
            channels=72,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'NBEATS':
        estimator = NBEATSEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'DeepRenewalProcess':
        estimator = DeepRenewalProcessEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            num_cells=40,
            num_layers=2,
        )
    elif algo_name == 'Tree':
        estimator = TreePredictor(
            freq = freq,
            prediction_length = prediction_length,
            context_length = context_length,
            n_ignore_last = 0,
            lead_time = 0,
            max_n_datapts = 1000000,
            min_bin_size = 100,  # Used only for "QRX" method.
            use_feat_static_real = False,
            use_feat_dynamic_cat = False,
            use_feat_dynamic_real = use_feat_dynamic_real,
            cardinality = cardinality,
            one_hot_encode = False,
            model_params = {'eta': 0.1, 'max_depth': 6, 'silent': 0, 'nthread': -1, 'n_jobs': -1, 'gamma': 1, 'subsample': 0.9, 'min_child_weight': 1, 'colsample_bytree': 0.9, 'lambda': 1, 'booster': 'gbtree'},
            max_workers = 4,  # default: None
            method = "QRX",  # "QRX",  "QuantileRegression", "QRF"
            quantiles=None,  # Used only for "QuantileRegression" method.
            model=None,
            seed=None,
        )
    elif algo_name == 'SelfAttention':
#         # TODO
#         estimator = SelfAttentionEstimator(
#             freq=freq,
#             prediction_length=prediction_length,
#             context_length=context_length,
#             trainer=trainer,
#             batch_size=batch_size,
#         )
        pass
    elif algo_name == 'MQCNN':
        estimator = MQCNNEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
            use_past_feat_dynamic_real=use_past_feat_dynamic_real,
            use_feat_dynamic_real=use_feat_dynamic_real,
            use_feat_static_cat=use_feat_static_cat,
            cardinality=cardinality,
            embedding_dimension=embedding_dimension,
            add_time_feature=True,
            add_age_feature=False,
            enable_encoder_dynamic_feature=True,
            enable_decoder_dynamic_feature=True,
            seed=None,
            decoder_mlp_dim_seq=None,
            channels_seq=None,
            dilation_seq=None,
            kernel_size_seq=None,
            use_residual=True,
            quantiles=None,
            distr_output=None,
            scaling=None,
            scaling_decoder_dynamic_feature=False,
            num_forking=None,
            max_ts_len=None,
        )
    elif algo_name == 'MQRNN':
        estimator = MQRNNEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'Seq2Seq':
        # # TODO
        # estimator = Seq2SeqEstimator(
        #     freq=freq,
        #     prediction_length=prediction_length,
        #     context_length=context_length,
        #     trainer=trainer,
        #     cardinality=cardinality,
        #     embedding_dimension=4,
        #     encoder=Seq2SeqEncoder(),
        #     decoder_mlp_layer=[4],
        #     decoder_mlp_static_dim=4
        # )
        pass
    elif algo_name == 'SimpleFeedForward':
        estimator = SimpleFeedForwardEstimator(
            num_hidden_dimensions=[40, 40],
            prediction_length=prediction_length,
            context_length=context_length,
            freq=freq,
            trainer=trainer,
            batch_size=batch_size,
        )
    elif algo_name == 'TemporalFusionTransformer':
        estimator = TemporalFusionTransformerEstimator(
            prediction_length=prediction_length,
            context_length=context_length,
            freq=freq,
            trainer=trainer,
            batch_size=batch_size,
            hidden_dim = 32, 
            variable_dim = None, 
            num_heads = 4, 
            num_outputs = 3, 
            num_instance_per_series = 100, 
            dropout_rate = 0.1, 
        #     time_features = [], 
        #     static_cardinalities = {}, 
        #     dynamic_cardinalities = {}, 
        #     static_feature_dims = {}, 
        #     dynamic_feature_dims = {}, 
        #     past_dynamic_features = []
        )
    elif algo_name == 'DeepTPP':
#         # TODO
#         estimator = DeepTPPEstimator(
#             prediction_interval_length=prediction_length,
#             context_interval_length=context_length,
#             freq=freq,
#             trainer=trainer,
#             batch_size=batch_size,
#             num_marks=len(cardinality) if cardinality is not None else 0,
#         )
        pass
    elif algo_name == 'Transformer':
        estimator = TransformerEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=trainer,
            batch_size=batch_size,
            cardinality=cardinality,
        )
    elif algo_name == 'WaveNet':
        estimator = WaveNetEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=trainer,
            batch_size=batch_size,
            cardinality=cardinality,
        )
    elif algo_name == 'Naive2':
        # TODO Multiplicative seasonality is not appropriate for zero and negative values
        predictor = Naive2Predictor(freq=freq, prediction_length=prediction_length, season_length=context_length)
    elif algo_name == 'NPTS':
        predictor = NPTSPredictor(freq=freq, prediction_length=prediction_length, context_length=context_length)
    elif algo_name == 'Prophet':
        def configure_model(model):
            model.add_seasonality(
                name='weekly', period=7, fourier_order=3, prior_scale=0.1
            )
            return model
        predictor = ProphetPredictor(freq=freq, prediction_length=prediction_length, init_model=configure_model)
    elif algo_name == 'ARIMA':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='arima',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'ETS':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='ets',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'TBATS':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='tbats',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'CROSTON':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='croston',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'MLP':
        predictor = RForecastPredictor(freq=freq,
                                      prediction_length=prediction_length,
                                      method_name='mlp',
                                      period=context_length,
                                      trunc_length=len(train[0]['target']))
    elif algo_name == 'SeasonalNaive':
        predictor = SeasonalNaivePredictor(freq=freq, prediction_length=prediction_length)
    else:
        print('[ERROR]:', algo_name, 'not supported')
        return
    
    if predictor is None:
        try:
            predictor = estimator.train(train_ds, test_ds)
        except Exception as e:
            print(e)
            try:
                grouper_train = MultivariateGrouper(max_target_dim=num_timeseries)
                train_ds_multi = grouper_train(train_ds)
                test_ds_multi = grouper_train(test_ds)
                predictor = estimator.train(train_ds_multi, test_ds_multi)
            except Exception as e:
                print(e)

    forecast_it, ts_it = make_evaluation_predictions(
        dataset=test_ds,  # test dataset
        predictor=predictor,  # predictor
        num_samples=100,  # number of sample paths we want for evaluation
    )

    forecasts = list(forecast_it)
    tss = list(ts_it)
#     print(len(forecasts), len(tss))
    
    evaluator = Evaluator(quantiles=[0.1, 0.5, 0.9])
    agg_metrics, item_metrics = evaluator(iter(tss), iter(forecasts), num_series=len(test_ds))

    print(json.dumps(agg_metrics, indent=4))
    
    model_dir = os.path.join(args.model_dir, algo_name)
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    predictor.serialize(Path(model_dir))
def train(bucket, seq, algo, freq, prediction_length, epochs, learning_rate,
          hybridize, num_batches_per_epoch):

    #create train dataset
    df = pd.read_csv(filepath_or_buffer=os.environ['SM_CHANNEL_TRAIN'] +
                     "/train.csv",
                     header=0,
                     index_col=0)

    training_data = ListDataset([{
        "start": df.index[0],
        "target": df.usage[:],
        "item_id": df.client[:]
    }],
                                freq=freq)

    #create test dataset
    df = pd.read_csv(filepath_or_buffer=os.environ['SM_CHANNEL_TEST'] +
                     "/test.csv",
                     header=0,
                     index_col=0)

    test_data = ListDataset([{
        "start": df.index[0],
        "target": df.usage[:],
        "item_id": 'client_12'
    }],
                            freq=freq)

    hook = Hook.create_from_json_file()
    #determine estimators##################################
    if algo == "DeepAR":
        estimator = DeepAREstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=1,
            trainer=Trainer(ctx="cpu",
                            epochs=epochs,
                            learning_rate=learning_rate,
                            hybridize=hybridize,
                            num_batches_per_epoch=num_batches_per_epoch))

        #train the model
        predictor = estimator.train(training_data=training_data)
        print("DeepAR training is complete SUCCESS")
    elif algo == "SFeedFwd":
        estimator = SimpleFeedForwardEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=Trainer(ctx="cpu",
                            epochs=epochs,
                            learning_rate=learning_rate,
                            hybridize=hybridize,
                            num_batches_per_epoch=num_batches_per_epoch))

        #train the model
        predictor = estimator.train(training_data=training_data)
        print("training is complete SUCCESS")
    elif algo == "lstnet":
        # Needed for LSTNet ONLY
        grouper = MultivariateGrouper(max_target_dim=6)
        training_data = grouper(training_data)
        test_data = grouper(test_data)
        context_length = prediction_length
        num_series = 1
        skip_size = 1
        ar_window = 1
        channels = 4

        estimator = LSTNetEstimator(
            freq=freq,
            prediction_length=prediction_length,
            context_length=context_length,
            num_series=num_series,
            skip_size=skip_size,
            ar_window=ar_window,
            channels=channels,
            trainer=Trainer(ctx="cpu",
                            epochs=epochs,
                            learning_rate=learning_rate,
                            hybridize=hybridize,
                            num_batches_per_epoch=num_batches_per_epoch))

        #train the model
        predictor = estimator.train(training_data=training_data)
        print("training is complete SUCCESS")
    elif algo == "seq2seq":
        estimator = MQCNNEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=Trainer(ctx="cpu",
                            epochs=epochs,
                            learning_rate=learning_rate,
                            hybridize=hybridize,
                            num_batches_per_epoch=num_batches_per_epoch))

        #train the model
        predictor = estimator.train(training_data=training_data)
        print("training is complete SUCCESS")
    else:
        estimator = TransformerEstimator(
            freq=freq,
            prediction_length=prediction_length,
            trainer=Trainer(ctx="cpu",
                            epochs=epochs,
                            learning_rate=learning_rate,
                            hybridize=hybridize,
                            num_batches_per_epoch=num_batches_per_epoch))

        #train the model
        predictor = estimator.train(training_data=training_data)
        print("training is complete SUCCESS")

    ###################################################

    #evaluate trained model on test data
    forecast_it, ts_it = make_evaluation_predictions(test_data,
                                                     predictor,
                                                     num_samples=100)
    print("EVALUATION is complete SUCCESS")
    forecasts = list(forecast_it)
    tss = list(ts_it)
    evaluator = Evaluator(quantiles=[0.1, 0.5, 0.9])
    agg_metrics, item_metrics = evaluator(iter(tss),
                                          iter(forecasts),
                                          num_series=len(test_data))
    print("METRICS retrieved SUCCESS")
    #bucket = "bwp-sandbox"

    mainpref = "gluonts/blog-models/"
    prefix = mainpref + str(seq) + "/"
    agg_df = pd.DataFrame(agg_metrics, index=[0])
    file = "metrics" + str(seq) + ".csv"
    os.system('mkdir metrics')
    cspath = os.path.join('metrics', file)
    agg_df.to_csv(cspath)
    s3.upload_file(cspath, bucket, mainpref + "metrics/" + file)

    hook.save_scalar("MAPE", agg_metrics["MAPE"], sm_metric=True)
    hook.save_scalar("RMSE", agg_metrics["RMSE"], sm_metric=True)
    hook.save_scalar("MASE", agg_metrics["MASE"], sm_metric=True)
    hook.save_scalar("MSE", agg_metrics["MSE"], sm_metric=True)

    print("MAPE:", agg_metrics["MAPE"])

    #save the model
    predictor.serialize(pathlib.Path(os.environ['SM_MODEL_DIR']))

    uploadDirectory(os.environ['SM_MODEL_DIR'], prefix, bucket)

    return predictor