def create_transformation(self) -> transform.Transformation: return transform.Chain( trans=[ transform.AsNumpyArray( field=FieldName.TARGET, expected_ndim=1 ), transform.AddTimeFeatures( start_field=transform.FieldName.START, target_field=transform.FieldName.TARGET, output_field=transform.FieldName.FEAT_TIME, time_features=time_features_from_frequency_str(self.freq), pred_length=self.prediction_length, ), transform.VstackFeatures( output_field=FieldName.FEAT_DYNAMIC_REAL, input_fields=[FieldName.FEAT_TIME], ), transform.SetFieldIfNotPresent( field=FieldName.FEAT_STATIC_CAT, value=[0.0] ), transform.AsNumpyArray( field=FieldName.FEAT_STATIC_CAT, expected_ndim=1 ), transform.InstanceSplitter( target_field=transform.FieldName.TARGET, is_pad_field=transform.FieldName.IS_PAD, start_field=transform.FieldName.START, forecast_start_field=transform.FieldName.FORECAST_START, train_sampler=ExpectedNumInstanceSampler(num_instances=1), past_length=self.context_length, future_length=self.prediction_length, time_series_fields=[FieldName.FEAT_DYNAMIC_REAL], ), ] )
def create_transformation(self) -> transform.Transformation: return transform.Chain( trans=[ transform.AsNumpyArray( field=FieldName.TARGET, expected_ndim=1 ), transform.AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field=FieldName.FEAT_TIME, time_features=time_features_from_frequency_str(self.freq), pred_length=self.prediction_length, ), transform.VstackFeatures( output_field=FieldName.FEAT_DYNAMIC_REAL, input_fields=[FieldName.FEAT_TIME], ), transform.SetFieldIfNotPresent( field=FieldName.FEAT_STATIC_CAT, value=[0.0] ), transform.AsNumpyArray( field=FieldName.FEAT_STATIC_CAT, expected_ndim=1 ), ] )