Exemple #1
0
 def create_transformation(self) -> Transformation:
     return Chain([
         AsNumpyArray(
             field=FieldName.TARGET,
             expected_ndim=1 + len(self.distr_output.event_shape),
         ),
         # maps the target to (1, T) if the target data is uni
         # dimensional
         ExpandDimArray(
             field=FieldName.TARGET,
             axis=0 if self.distr_output.event_shape[0] == 1 else None,
         ),
         AddObservedValuesIndicator(
             target_field=FieldName.TARGET,
             output_field=FieldName.OBSERVED_VALUES,
         ),
         AddTimeFeatures(
             start_field=FieldName.START,
             target_field=FieldName.TARGET,
             output_field=FieldName.FEAT_TIME,
             time_features=self.time_features,
             pred_length=self.prediction_length,
         ),
         VstackFeatures(
             output_field=FieldName.FEAT_TIME,
             input_fields=[FieldName.FEAT_TIME],
         ),
         SetFieldIfNotPresent(field=FieldName.FEAT_STATIC_CAT, value=[0.0]),
         TargetDimIndicator(
             field_name=FieldName.TARGET_DIM_INDICATOR,
             target_field=FieldName.TARGET,
         ),
         AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
     ])
    def create_transformation(self) -> Transformation:
        remove_field_names = [FieldName.FEAT_DYNAMIC_CAT]
        if not self.use_feat_dynamic_real:
            remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)
        if not self.use_feat_static_real:
            remove_field_names.append(FieldName.FEAT_STATIC_REAL)

        return Chain([RemoveFields(field_names=remove_field_names)] + (
            [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0]
                      )] if not self.use_feat_static_cat else []
        ) + ([SetField(
            output_field=FieldName.FEAT_STATIC_REAL, value=[0.0]
        )] if not self.use_feat_static_real else []) + [
            AsNumpyArray(
                field=FieldName
                .TARGET,
                expected_ndim=1 +
                len(self.distr_output
                    .event_shape),
            ),
            # maps the target to (1, T)
            # if the target data is uni dimensional
            ExpandDimArray(
                field=FieldName.TARGET,
                axis=0 if self.distr_output.event_shape[0] == 1 else None,
            ),
            AddObservedValuesIndicator(
                target_field=FieldName.TARGET,
                output_field=FieldName.OBSERVED_VALUES,
            ),
            AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=self.time_features,
                pred_length=self.prediction_length,
            ),
            AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_AGE,
                pred_length=self.prediction_length,
                log_scale=True,
            ),
            VstackFeatures(
                output_field=FieldName.FEAT_TIME,
                input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE] +
                ([FieldName.FEAT_DYNAMIC_REAL] if self.
                 use_feat_dynamic_real else []),
            ),
            TargetDimIndicator(
                field_name="target_dimension_indicator",
                target_field=FieldName.TARGET,
            ),
            AsNumpyArray(field=FieldName.FEAT_STATIC_CAT,
                         expected_ndim=1,
                         dtype=np.long),
            AsNumpyArray(field=FieldName.FEAT_STATIC_REAL, expected_ndim=1),
        ])
Exemple #3
0
    def create_transformation(self) -> Transformation:
        remove_field_names = [
            FieldName.FEAT_DYNAMIC_CAT,
            FieldName.FEAT_STATIC_REAL,
        ]
        if not self.use_feat_dynamic_real:
            remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)

        return Chain(
            [RemoveFields(field_names=remove_field_names)]
            + (
                [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
                if not self.use_feat_static_cat
                else []
            )
            + [
                AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
                AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
                # gives target the (1, T) layout
                ExpandDimArray(field=FieldName.TARGET, axis=0),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                ),
                # Unnormalized seasonal features
                AddTimeFeatures(
                    time_features=self.issm.time_features(),
                    pred_length=self.prediction_length,
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=SEASON_INDICATORS_FIELD,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=self.time_features,
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,
                    pred_length=self.prediction_length,
                    log_scale=True,
                ),
                VstackFeatures(
                    output_field=FieldName.FEAT_TIME,
                    input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                    + (
                        [FieldName.FEAT_DYNAMIC_REAL]
                        if self.use_feat_dynamic_real
                        else []
                    ),
                ),
            ]
        )
Exemple #4
0
    def create_transformation(self) -> Transformation:
        remove_field_names = [FieldName.FEAT_DYNAMIC_CAT]
        if not self.use_feat_dynamic_real:
            remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)

        return Chain([
            RemoveFields(field_names=remove_field_names),
            AsNumpyArray(
                field=FieldName.TARGET,
                expected_ndim=2,
            ),
            # maps the target to (1, T)
            # if the target data is uni dimensional
            ExpandDimArray(
                field=FieldName.TARGET,
                axis=None,
            ),
            AddObservedValuesIndicator(
                target_field=FieldName.TARGET,
                output_field=FieldName.OBSERVED_VALUES,
            ),
            AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=self.time_features,
                pred_length=self.prediction_length,
            ),
            VstackFeatures(
                output_field=FieldName.FEAT_TIME,
                input_fields=[FieldName.FEAT_TIME] +
                ([FieldName.FEAT_DYNAMIC_REAL]
                 if self.use_feat_dynamic_real else []),
            ),
            SetFieldIfNotPresent(field=FieldName.FEAT_STATIC_CAT, value=[0]),
            TargetDimIndicator(
                field_name="target_dimension_indicator",
                target_field=FieldName.TARGET,
            ),
            AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
        ])
Exemple #5
0
    def create_transformation(self) -> Transformation:
        remove_field_names = [
            FieldName.FEAT_DYNAMIC_CAT,
            FieldName.FEAT_STATIC_REAL,
        ]
        if not self.use_feat_dynamic_real:
            remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)

        return Chain(
            [RemoveFields(field_names=remove_field_names)]
            + (
                [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
                if not self.use_feat_static_cat
                else []
            )
            + [
                AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
                AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
                # gives target the (1, T) layout
                ExpandDimArray(field=FieldName.TARGET, axis=0),
                AddObservedValuesIndicator(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.OBSERVED_VALUES,
                ),
                # Unnormalized seasonal features
                AddTimeFeatures(
                    time_features=CompositeISSM.seasonal_features(self.freq),
                    pred_length=self.prediction_length,
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=SEASON_INDICATORS_FIELD,
                ),
                AddTimeFeatures(
                    start_field=FieldName.START,
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_TIME,
                    time_features=self.time_features,
                    pred_length=self.prediction_length,
                ),
                AddAgeFeature(
                    target_field=FieldName.TARGET,
                    output_field=FieldName.FEAT_AGE,
                    pred_length=self.prediction_length,
                    log_scale=True,
                ),
                VstackFeatures(
                    output_field=FieldName.FEAT_TIME,
                    input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                    + (
                        [FieldName.FEAT_DYNAMIC_REAL]
                        if self.use_feat_dynamic_real
                        else []
                    ),
                ),
                CanonicalInstanceSplitter(
                    target_field=FieldName.TARGET,
                    is_pad_field=FieldName.IS_PAD,
                    start_field=FieldName.START,
                    forecast_start_field=FieldName.FORECAST_START,
                    instance_sampler=TestSplitSampler(),
                    time_series_fields=[
                        FieldName.FEAT_TIME,
                        SEASON_INDICATORS_FIELD,
                        FieldName.OBSERVED_VALUES,
                    ],
                    allow_target_padding=True,
                    instance_length=self.past_length,
                    use_prediction_features=True,
                    prediction_length=self.prediction_length,
                ),
            ]
        )
Exemple #6
0
    def create_transformation(self) -> Transformation:
        def use_marginal_transformation(
            marginal_transformation: bool, ) -> Transformation:
            if marginal_transformation:
                return CDFtoGaussianTransform(
                    target_field=FieldName.TARGET,
                    observed_values_field=FieldName.OBSERVED_VALUES,
                    max_context_length=self.conditioning_length,
                    target_dim=self.target_dim,
                )
            else:
                return RenameFields({
                    f"past_{FieldName.TARGET}":
                    f"past_{FieldName.TARGET}_cdf",
                    f"future_{FieldName.TARGET}":
                    f"future_{FieldName.TARGET}_cdf",
                })

        return Chain([
            AsNumpyArray(
                field=FieldName.TARGET,
                expected_ndim=1 + len(self.distr_output.event_shape),
            ),
            # maps the target to (1, T) if the target data is uni
            # dimensional
            ExpandDimArray(
                field=FieldName.TARGET,
                axis=0 if self.distr_output.event_shape[0] == 1 else None,
            ),
            AddObservedValuesIndicator(
                target_field=FieldName.TARGET,
                output_field=FieldName.OBSERVED_VALUES,
            ),
            AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=self.time_features,
                pred_length=self.prediction_length,
            ),
            VstackFeatures(
                output_field=FieldName.FEAT_TIME,
                input_fields=[FieldName.FEAT_TIME],
            ),
            SetFieldIfNotPresent(field=FieldName.FEAT_STATIC_CAT, value=[0.0]),
            TargetDimIndicator(
                field_name=FieldName.TARGET_DIM_INDICATOR,
                target_field=FieldName.TARGET,
            ),
            AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
            InstanceSplitter(
                target_field=FieldName.TARGET,
                is_pad_field=FieldName.IS_PAD,
                start_field=FieldName.START,
                forecast_start_field=FieldName.FORECAST_START,
                train_sampler=ExpectedNumInstanceSampler(num_instances=1),
                past_length=self.history_length,
                future_length=self.prediction_length,
                time_series_fields=[
                    FieldName.FEAT_TIME,
                    FieldName.OBSERVED_VALUES,
                ],
                pick_incomplete=self.pick_incomplete,
            ),
            use_marginal_transformation(self.use_marginal_transformation),
            SampleTargetDim(
                field_name=FieldName.TARGET_DIM_INDICATOR,
                target_field=FieldName.TARGET + "_cdf",
                observed_values_field=FieldName.OBSERVED_VALUES,
                num_samples=self.target_dim_sample,
                shuffle=self.shuffle_target_dim,
            ),
        ])
def create_input_transform(
    is_train,
    prediction_length,
    past_length,
    use_feat_static_cat,
    use_feat_dynamic_real,
    freq,
    time_features,
    extract_tail_chunks_for_train: bool = False,
):
    SEASON_INDICATORS_FIELD = "seasonal_indicators"
    remove_field_names = [
        FieldName.FEAT_DYNAMIC_CAT,
        FieldName.FEAT_STATIC_REAL,
    ]
    if not use_feat_dynamic_real:
        remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)

    time_features = (
        time_features
        if time_features is not None
        else time_features_from_frequency_str(freq)
    )

    transform = Chain(
        [RemoveFields(field_names=remove_field_names)]
        + (
            [SetField(output_field=FieldName.FEAT_STATIC_CAT, value=[0.0])]
            if not use_feat_static_cat
            else []
        )
        + [
            AsNumpyArray(field=FieldName.FEAT_STATIC_CAT, expected_ndim=1),
            AsNumpyArray(field=FieldName.TARGET, expected_ndim=1),
            # gives target the (1, T) layout
            ExpandDimArray(field=FieldName.TARGET, axis=0),
            AddObservedValuesIndicator(
                target_field=FieldName.TARGET,
                output_field=FieldName.OBSERVED_VALUES,
            ),
            # Unnormalized seasonal features
            AddTimeFeatures(
                time_features=CompositeISSM.seasonal_features(freq),
                pred_length=prediction_length,
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=SEASON_INDICATORS_FIELD,
            ),
            AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=time_features,
                pred_length=prediction_length,
            ),
            AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_AGE,
                pred_length=prediction_length,
                log_scale=True,
            ),
            VstackFeatures(
                output_field=FieldName.FEAT_TIME,
                input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
                + (
                    [FieldName.FEAT_DYNAMIC_REAL]
                    if use_feat_dynamic_real
                    else []
                ),
            ),
            CanonicalInstanceSplitter(
                target_field=FieldName.TARGET,
                is_pad_field=FieldName.IS_PAD,
                start_field=FieldName.START,
                forecast_start_field=FieldName.FORECAST_START,
                instance_sampler=ExpectedNumInstanceSampler(num_instances=1),
                time_series_fields=[
                    FieldName.FEAT_TIME,
                    SEASON_INDICATORS_FIELD,
                    FieldName.OBSERVED_VALUES,
                ],
                allow_target_padding=True,
                instance_length=past_length,
                use_prediction_features=True,
                prediction_length=prediction_length,
            )
            if (is_train and not extract_tail_chunks_for_train)
            else CanonicalInstanceSplitter(
                target_field=FieldName.TARGET,
                is_pad_field=FieldName.IS_PAD,
                start_field=FieldName.START,
                forecast_start_field=FieldName.FORECAST_START,
                instance_sampler=TestSplitSampler(),
                time_series_fields=[
                    FieldName.FEAT_TIME,
                    SEASON_INDICATORS_FIELD,
                    FieldName.OBSERVED_VALUES,
                ],
                allow_target_padding=True,
                instance_length=past_length,
                use_prediction_features=True,
                prediction_length=prediction_length,
            ),
        ]
    )
    return transform