Exemple #1
0
def test_process_streams():
    # Loma Prieta test station (nc216859)

    data_files, origin = read_data_dir("geonet", "us1000778i", "*.V1A")
    streams = []
    for f in data_files:
        streams += read_data(f)

    sc = StreamCollection(streams)

    sc.describe()

    config = update_config(os.path.join(datadir, "config_min_freq_0p2.yml"))

    test = process_streams(sc, origin, config=config)

    logging.info(f"Testing trace: {test[0][1]}")

    assert len(test) == 3
    assert len(test[0]) == 3
    assert len(test[1]) == 3
    assert len(test[2]) == 3

    # Apparently the traces end up in a different order on the Travis linux
    # container than on my local mac. So testing individual traces need to
    # not care about trace order.

    trace_maxes = np.sort(
        [np.max(np.abs(t.data)) for t in test.select(station="HSES")[0]])

    np.testing.assert_allclose(trace_maxes,
                               np.array([157.812449, 240.379521, 263.601519]),
                               rtol=1e-5)
Exemple #2
0
def generate_workspace():
    """Generate simple HDF5 with ASDF layout for testing."""
    PCOMMANDS = [
        "assemble",
        "process",
    ]
    EVENTID = "us1000778i"
    LABEL = "ptest"
    datafiles, event = read_data_dir("geonet", EVENTID, "*.V1A")

    tdir = tempfile.mkdtemp()
    tfilename = os.path.join(tdir, "workspace.h5")

    raw_data = []
    for dfile in datafiles:
        raw_data += read_data(dfile)
    write_asdf(tfilename, raw_data, event, label="unprocessed")
    del raw_data

    config = update_config(os.path.join(datadir, "config_min_freq_0p2.yml"))

    workspace = StreamWorkspace.open(tfilename)
    raw_streams = workspace.getStreams(EVENTID,
                                       labels=["unprocessed"],
                                       config=config)
    pstreams = process_streams(raw_streams, event, config=config)
    workspace.addStreams(event, pstreams, label=LABEL)
    workspace.calcMetrics(event.id, labels=[LABEL], config=config)

    return tfilename
Exemple #3
0
def test_metrics():
    eventid = "usb000syza"
    datafiles, event = read_data_dir("knet", eventid, "*")
    datadir = os.path.split(datafiles[0])[0]
    raw_streams = StreamCollection.from_directory(datadir)
    config = update_config(os.path.join(datadir, "config_min_freq_0p2.yml"))
    # turn off sta/lta check and snr checks
    # newconfig = drop_processing(config, ['check_sta_lta', 'compute_snr'])
    # processed_streams = process_streams(raw_streams, event, config=newconfig)
    newconfig = config.copy()
    newconfig["processing"].append(
        {"NNet_QA": {
            "acceptance_threshold": 0.5,
            "model_name": "CantWell"
        }})
    processed_streams = process_streams(raw_streams.copy(),
                                        event,
                                        config=newconfig)

    tdir = tempfile.mkdtemp()
    try:
        tfile = os.path.join(tdir, "test.hdf")
        workspace = StreamWorkspace(tfile)
        workspace.addEvent(event)
        workspace.addStreams(event, raw_streams, label="raw")
        workspace.addStreams(event, processed_streams, label="processed")
        stream1 = raw_streams[0]

        # Get metrics from station summary for raw streams
        summary1 = StationSummary.from_config(stream1)
        s1_df_in = summary1.pgms.sort_values(["IMT", "IMC"])
        array1 = s1_df_in["Result"].to_numpy()

        # Compare to metrics from getStreamMetrics for raw streams
        workspace.calcMetrics(eventid, labels=["raw"])
        summary1_a = workspace.getStreamMetrics(event.id,
                                                stream1[0].stats.network,
                                                stream1[0].stats.station,
                                                "raw")
        s1_df_out = summary1_a.pgms.sort_values(["IMT", "IMC"])
        array2 = s1_df_out["Result"].to_numpy()

        np.testing.assert_allclose(array1, array2, atol=1e-6, rtol=1e-6)
        workspace.close()
    except Exception as e:
        raise (e)
    finally:
        shutil.rmtree(tdir)
Exemple #4
0
def test_check_instrument():
    data_files, origin = read_data_dir("fdsn", "nc51194936", "*.mseed")
    streams = []
    for f in data_files:
        streams += read_data(f)

    sc = StreamCollection(streams)
    sc.describe()

    config = update_config(os.path.join(datadir,
                                        "config_test_check_instr.yml"))
    test = process_streams(sc, origin, config=config)

    for sta, expected in [("CVS", True), ("GASB", True), ("SBT", False)]:
        st = test.select(station=sta)[0]
        logging.info(f"Testing stream: {st}")
        assert st.passed == expected
Exemple #5
0
def _test_metrics2():
    eventid = "usb000syza"
    datafiles, event = read_data_dir("knet", eventid, "*")
    datadir = os.path.split(datafiles[0])[0]
    raw_streams = StreamCollection.from_directory(datadir)
    config = update_config(os.path.join(datadir, "config_min_freq_0p2.yml"))
    config["metrics"]["output_imts"].append("Arias")
    config["metrics"]["output_imcs"].append("arithmetic_mean")
    # Adjust checks so that streams pass checks for this test
    newconfig = drop_processing(config, ["check_sta_lta"])
    csnr = [s for s in newconfig["processing"] if "compute_snr" in s.keys()][0]
    csnr["compute_snr"]["check"]["threshold"] = -10.0
    processed_streams = process_streams(raw_streams, event, config=newconfig)

    tdir = tempfile.mkdtemp()
    try:
        tfile = os.path.join(tdir, "test.hdf")
        workspace = StreamWorkspace(tfile)
        workspace.addEvent(event)
        workspace.addStreams(event, processed_streams, label="processed")
        workspace.calcMetrics(event.id, labels=["processed"])
        etable, imc_tables1, readmes1 = workspace.getTables("processed")
        assert "ARITHMETIC_MEAN" not in imc_tables1
        assert "ARITHMETIC_MEAN" not in readmes1
        del workspace.dataset.auxiliary_data.WaveFormMetrics
        del workspace.dataset.auxiliary_data.StationMetrics
        workspace.calcMetrics(event.id, labels=["processed"], config=config)
        etable2, imc_tables2, readmes2 = workspace.getTables("processed")
        assert "ARITHMETIC_MEAN" in imc_tables2
        assert "ARITHMETIC_MEAN" in readmes2
        assert "ARIAS" in imc_tables2["ARITHMETIC_MEAN"]
        testarray = readmes2["ARITHMETIC_MEAN"]["Column header"].to_numpy()
        assert "ARIAS" in testarray
        workspace.close()
    except Exception as e:
        raise (e)
    finally:
        shutil.rmtree(tdir)
Exemple #6
0
def _test_workspace():
    eventid = "us1000778i"
    datafiles, event = read_data_dir("geonet", eventid, "*.V1A")
    tdir = tempfile.mkdtemp()
    try:
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=H5pyDeprecationWarning)
            warnings.filterwarnings("ignore", category=YAMLError)
            warnings.filterwarnings("ignore", category=FutureWarning)
            config = update_config(
                os.path.join(datadir, "config_min_freq_0p2.yml"))
            tfile = os.path.join(tdir, "test.hdf")
            raw_streams = []
            for dfile in datafiles:
                raw_streams += read_data(dfile)

            workspace = StreamWorkspace(tfile)
            t1 = time.time()
            workspace.addStreams(event, raw_streams, label="raw")
            t2 = time.time()
            print("Adding %i streams took %.2f seconds" % (len(raw_streams),
                                                           (t2 - t1)))

            str_repr = workspace.__repr__()
            assert str_repr == "Events: 1 Stations: 3 Streams: 3"

            eventobj = workspace.getEvent(eventid)
            assert eventobj.origins[0].latitude == event.origins[0].latitude
            assert eventobj.magnitudes[0].mag == event.magnitudes[0].mag

            stations = workspace.getStations()
            assert sorted(stations) == ["HSES", "THZ", "WTMC"]

            stations = workspace.getStations()
            assert sorted(stations) == ["HSES", "THZ", "WTMC"]

            # test retrieving event that doesn't exist
            with pytest.raises(KeyError):
                workspace.getEvent("foo")

            instream = None
            for stream in raw_streams:
                if stream[0].stats.station.lower() == "hses":
                    instream = stream
                    break
            if instream is None:
                raise ValueError("Instream should not be none.")
            outstream = workspace.getStreams(eventid,
                                             stations=["HSES"],
                                             labels=["raw"])[0]
            compare_streams(instream, outstream)

            label_summary = workspace.summarizeLabels()
            assert label_summary.iloc[0]["Label"] == "raw"
            assert label_summary.iloc[0]["Software"] == "gmprocess"

            sc = StreamCollection(raw_streams)
            processed_streams = process_streams(sc, event, config=config)
            workspace.addStreams(event, processed_streams, "processed")

            idlist = workspace.getEventIds()
            assert idlist[0] == eventid

            outstream = workspace.getStreams(eventid,
                                             stations=["HSES"],
                                             labels=["processed"])[0]

            provenance = workspace.getProvenance(eventid, labels=["processed"])
            first_row = pd.Series({
                "Record": "NZ.HSES.--.HN1_us1000778i_processed",
                "Processing Step": "Remove Response",
                "Step Attribute": "input_units",
                "Attribute Value": "counts",
            })

            last_row = pd.Series({
                "Record": "NZ.WTMC.--.HNZ_us1000778i_processed",
                "Processing Step": "Lowpass Filter",
                "Step Attribute": "number_of_passes",
                "Attribute Value": 2,
            })
            assert provenance.iloc[0].equals(first_row)
            assert provenance.iloc[-1].equals(last_row)

            # compare the parameters from the input processed stream
            # to it's output equivalent
            instream = None
            for stream in processed_streams:
                if stream[0].stats.station.lower() == "hses":
                    instream = stream
                    break
            if instream is None:
                raise ValueError("Instream should not be none.")
            compare_streams(instream, outstream)
            workspace.close()

            # read in data from a second event and stash it in the workspace
            eventid = "nz2018p115908"
            datafiles, event = read_data_dir("geonet", eventid, "*.V2A")
            raw_streams = []
            for dfile in datafiles:
                raw_streams += read_data(dfile)

            workspace = StreamWorkspace.open(tfile)
            workspace.addStreams(event, raw_streams, label="foo")

            stations = workspace.getStations()

            eventids = workspace.getEventIds()
            assert eventids == ["us1000778i", "nz2018p115908"]
            instation = raw_streams[0][0].stats.station
            this_stream = workspace.getStreams(eventid,
                                               stations=[instation],
                                               labels=["foo"])[0]
            assert instation == this_stream[0].stats.station
            usid = "us1000778i"
            inventory = workspace.getInventory(usid)
            workspace.close()
            codes = [
                station.code for station in inventory.networks[0].stations
            ]
            assert sorted(set(codes)) == ["HSES", "THZ", "WPWS", "WTMC"]

    except Exception as e:
        raise (e)
    finally:
        shutil.rmtree(tdir)
Exemple #7
0
def _test_vs30_dist_metrics():
    KNOWN_DISTANCES = {
        "epicentral": 5.1,
        "hypocentral": 10.2,
        "rupture": 2.21,
        "rupture_var": np.nan,
        "joyner_boore": 2.21,
        "joyner_boore_var": np.nan,
        "gc2_rx": 2.66,
        "gc2_ry": 3.49,
        "gc2_ry0": 0.00,
        "gc2_U": 34.34,
        "gc2_T": 2.66,
    }
    KNOWN_BAZ = 239.46
    KNOWN_VS30 = 331.47

    eventid = "ci38457511"
    datafiles, event = read_data_dir("fdsn", eventid, "*")
    datadir = os.path.split(datafiles[0])[0]
    raw_streams = StreamCollection.from_directory(datadir)
    config = update_config(os.path.join(datadir, "config_min_freq_0p2.yml"))
    processed_streams = process_streams(raw_streams, event, config=config)
    rupture_file = get_rupture_file(datadir)
    grid_file = os.path.join(datadir, "test_grid.grd")
    config["metrics"]["vs30"] = {
        "vs30": {
            "file": grid_file,
            "column_header": "GlobalVs30",
            "readme_entry": "GlobalVs30",
            "units": "m/s",
        }
    }
    tdir = tempfile.mkdtemp()
    try:
        tfile = os.path.join(tdir, "test.hdf")
        ws = StreamWorkspace(tfile)
        ws.addEvent(event)
        ws.addStreams(event, raw_streams, label="raw")
        ws.addStreams(event, processed_streams, label="processed")
        ws.calcMetrics(event.id,
                       rupture_file=rupture_file,
                       labels=["processed"],
                       config=config)
        sta_sum = ws.getStreamMetrics(event.id, "CI", "CLC", "processed")

        for dist in sta_sum.distances:
            np.testing.assert_allclose(sta_sum.distances[dist],
                                       KNOWN_DISTANCES[dist],
                                       rtol=0.01)
        np.testing.assert_allclose(sta_sum._back_azimuth, KNOWN_BAZ, rtol=0.01)
        np.testing.assert_allclose(sta_sum._vs30["vs30"]["value"],
                                   KNOWN_VS30,
                                   rtol=0.01)
        event_df, imc_tables, readme_tables = ws.getTables("processed")
        ws.close()
        check_cols = set([
            "EpicentralDistance",
            "HypocentralDistance",
            "RuptureDistance",
            "RuptureDistanceVar",
            "JoynerBooreDistance",
            "JoynerBooreDistanceVar",
            "GC2_rx",
            "GC2_ry",
            "GC2_ry0",
            "GC2_U",
            "GC2_T",
            "GlobalVs30",
            "BackAzimuth",
        ])
        assert check_cols.issubset(set(readme_tables["Z"]["Column header"]))
        assert check_cols.issubset(set(imc_tables["Z"].columns))
    except Exception as e:
        raise (e)
    finally:
        shutil.rmtree(tdir)