def williams_pp1(n):
    if isprime(n): return n
    m = ispower(n)
    if m: return m
    for v in count(1):
        for p in primegen():
            e = ilog(isqrt(n), p)
            if e == 0: break
            for _ in xrange(e): v = mlucas(v, p, n)
            g = gcd(v - 2, n)
            if 1 < g < n: return g
            if g == n: break
def introot(n, r=2):
    if n < 0: return None if r%2 == 0 else -introot(-n, r)
    if n < 2: return n
    if r == 2: return isqrt(n)
    lower, upper = 0, n
    while lower != upper - 1:
        mid = (lower + upper) / 2
        m = mid**r
        if   m == n: return  mid
        elif m <  n: lower = mid
        elif m >  n: upper = mid
    return lower
def primefac(n, trial_limit=1000, rho_rounds=42000, verbose=False,
             methods=(pollardRho_brent, pollard_pm1, williams_pp1, ecm, mpqs)):
    # Obtains a complete factorization of n, yielding the prime factors as they are obtained.
    # If the user explicitly specifies a splitting method, use that method.  Otherwise,
    # 1.  Pull out small factors with trial division.
    # TODO: a few rounds of Fermat's method?
    # 2.  Do a few rounds of Pollard's Rho algorithm.
    # TODO: a few rounds of ECM by itself?
    # TODO: a certain amount of P-1?
    # 3.  Launch multifactor on the remainder.  Multifactor has enough overhead that we want to be fairly sure that rho isn't
    #     likely to yield new factors soon.  The default value of rho_rounds=42000 seems good for that but is probably overkill.
    
    if n < 2: return
    if isprime(n): yield n; return
    
    factors, nroot = [], isqrt(n)
    for p in primegen(): # Note that we remove factors of 2 whether the user wants to or not.
        if n%p == 0:
            while n%p == 0:
                yield p
                n /= p
            nroot = isqrt(n)
            if isprime(n):
                yield n
                return
        if p > nroot:
            if n != 1: yield n
            return
        if p >= trial_limit: break
    if isprime(n): yield n; return
    
    if rho_rounds == "inf":
        factors = [n]
        while len(factors) != 0:
            n = min(factors)
            factors.remove(n)
            f = pollardRho_brent(n)
            if isprime(f): yield f
            else: factors.append(f)
            n /= f
            if isprime(n): yield n
            else: factors.append(n)
        return
    
    factors, difficult = [n], []
    while len(factors) != 0:
        rhocount = 0
        n = factors.pop()
        try:
            g = n
            while g == n:
                x, c, g = randrange(1, n), randrange(1, n), 1
                y = x
                while g==1:
                    if rhocount >= rho_rounds: raise Exception
                    rhocount += 1
                    x = (x**2 + c) % n
                    y = (y**2 + c) % n
                    y = (y**2 + c) % n
                    g = gcd(x-y, n)
            # We now have a nontrivial factor g of n.  If we took too long to get here, we're actually at the except statement.
            if isprime(g): yield g
            else: factors.append(g)
            n /= g
            if isprime(n): yield n
            else: factors.append(n)
        except Exception: difficult.append(n) # Factoring n took too long.  We'll have multifactor chug on it.
    
    factors = difficult
    while len(factors) != 0:
        n = min(factors)
        factors.remove(n)
        f = multifactor(n, methods=methods, verbose=verbose)
        if isprime(f): yield f
        else: factors.append(f)
        n /= f
        if isprime(n): yield n
        else: factors.append(n)
def mpqs(n):
    # When the bound proves insufficiently large, we throw out all our work and start over.
    # TODO: When this happens, get more data, but don't trash what we already have.
    # TODO: Rewrite to get a few more relations before proceeding to the linear algebra.
    # TODO: When we need to increase the bound, what is the optimal increment?
    
    # Special cases: this function poorly handles primes and perfect powers:
    m = ispower(n)
    if m: return m
    if isprime(n): return n
    
    root_n, root_2n = isqrt(n), isqrt(2*n)
    bound = ilog(n**6, 10)**2  # formula chosen by experiment
    
    while True:
        try:
            prime, mod_root, log_p, num_prime = [], [], [], 0
            
            # find a number of small primes for which n is a quadratic residue
            p = 2
            while p < bound or num_prime < 3:
                leg = legendre(n%p, p)
                if leg == 1:
                    prime += [p]
                    mod_root += [mod_sqrt(n, p)]    # the rhs was [int(mod_sqrt(n, p))].  If we get errors, put it back.
                    log_p += [log(p, 10)]
                    num_prime += 1
                elif leg == 0: return p
                p = nextprime(p)
            
            x_max = len(prime)*60    # size of the sieve
            
            m_val = (x_max * root_2n) >> 1    # maximum value on the sieved range
            
            # fudging the threshold down a bit makes it easier to find powers of primes as factors
            # as well as partial-partial relationships, but it also makes the smoothness check slower.
            # there's a happy medium somewhere, depending on how efficient the smoothness check is
            thresh = log(m_val, 10) * 0.735
            
            # skip small primes. they contribute very little to the log sum
            # and add a lot of unnecessary entries to the table
            # instead, fudge the threshold down a bit, assuming ~1/4 of them pass
            min_prime = mpz(thresh*3)
            fudge = sum(log_p[i] for i,p in enumerate(prime) if p < min_prime)/4
            thresh -= fudge
            
            smooth, used_prime, partial = [], set(), {}
            num_smooth, num_used_prime, num_partial, num_poly, root_A = 0, 0, 0, 0, isqrt(root_2n / x_max)
            
            while num_smooth <= num_used_prime:
                # find an integer value A such that:
                # A is =~ sqrt(2*n) / x_max
                # A is a perfect square
                # sqrt(A) is prime, and n is a quadratic residue mod sqrt(A)
                while True:
                    root_A = nextprime(root_A)
                    leg = legendre(n, root_A)
                    if leg == 1: break
                    elif leg == 0: return root_A
                
                A = root_A**2
                
                # solve for an adequate B
                # B*B is a quadratic residue mod n, such that B*B-A*C = n
                # this is unsolvable if n is not a quadratic residue mod sqrt(A)
                b = mod_sqrt(n, root_A)
                B = (b + (n - b*b) * modinv(b + b, root_A))%A
                C = (B*B - n) / A        # B*B-A*C = n <=> C = (B*B-n)/A
                
                num_poly += 1
                
                # sieve for prime factors
                sums, i = [0.0]*(2*x_max), 0
                for p in prime:
                    if p < min_prime:
                        i += 1
                        continue
                    logp = log_p[i]
                    inv_A = modinv(A, p)
                    # modular root of the quadratic
                    a, b, k = mpz(((mod_root[i] - B) * inv_A)%p), mpz(((p - mod_root[i] - B) * inv_A)%p), 0
                    while k < x_max:
                        if k+a < x_max: sums[k+a] += logp
                        if k+b < x_max: sums[k+b] += logp
                        if k:
                            sums[k-a+x_max] += logp
                            sums[k-b+x_max] += logp
                        k += p
                    i += 1
                
                # check for smooths
                i = 0
                for v in sums:
                    if v > thresh:
                        x, vec, sqr = x_max-i if i > x_max else i, set(), []
                        # because B*B-n = A*C
                        # (A*x+B)^2 - n = A*A*x*x+2*A*B*x + B*B - n
                        #               = A*(A*x*x+2*B*x+C)
                        # gives the congruency
                        # (A*x+B)^2 = A*(A*x*x+2*B*x+C) (mod n)
                        # because A is chosen to be square, it doesn't need to be sieved
                        val = sieve_val = (A*x + 2*B)*x + C
                        if sieve_val < 0: vec, sieve_val = {-1}, -sieve_val
                        
                        for p in prime:
                            while sieve_val%p == 0:
                                if p in vec: sqr += [p] # track perfect sqr facs to avoid sqrting something huge at the end
                                vec ^= {p}
                                sieve_val = mpz(sieve_val / p)
                        if sieve_val == 1: # smooth
                            smooth += [(vec, (sqr, (A*x+B), root_A))]
                            used_prime |= vec
                        elif sieve_val in partial:
                            # combine two partials to make a (xor) smooth
                            # that is, every prime factor with an odd power is in our factor base
                            pair_vec, pair_vals = partial[sieve_val]
                            sqr += list(vec & pair_vec) + [sieve_val]
                            vec ^= pair_vec
                            smooth += [(vec, (sqr + pair_vals[0], (A*x+B)*pair_vals[1], root_A*pair_vals[2]))]
                            used_prime |= vec
                            num_partial += 1
                        else: partial[sieve_val] = (vec, (sqr, A*x+B, root_A))      # save partial for later pairing
                    i += 1
                
                num_smooth, num_used_prime = len(smooth), len(used_prime)
            
            used_prime = sorted(list(used_prime))
            
            # set up bit fields for gaussian elimination
            masks, mask, bitfields = [], 1, [0]*num_used_prime
            for vec, vals in smooth:
                masks += [mask]
                i = 0
                for p in used_prime:
                    if p in vec: bitfields[i] |= mask
                    i += 1
                mask <<= 1
            
            # row echelon form
            offset = 0
            null_cols = []
            for col in xrange(num_smooth):
                pivot = bitfields[col-offset] & masks[col] == 0 # This occasionally throws IndexErrors.
                # TODO: figure out why it throws errors and fix it.
                for row in xrange(col+1-offset, num_used_prime):
                    if bitfields[row] & masks[col]:
                        if pivot: bitfields[col-offset], bitfields[row], pivot = bitfields[row], bitfields[col-offset], False
                        else: bitfields[row] ^= bitfields[col-offset]
                if pivot:
                    null_cols += [col]
                    offset += 1
            
            # reduced row echelon form
            for row in xrange(num_used_prime):
                mask = bitfields[row] & -bitfields[row]        # lowest set bit
                for up_row in xrange(row):
                    if bitfields[up_row] & mask: bitfields[up_row] ^= bitfields[row]
            
            # check for non-trivial congruencies
            # TODO: if none exist, check combinations of null space columns...
            # if _still_ none exist, sieve more values
            for col in null_cols:
                all_vec, (lh, rh, rA) = smooth[col]
                lhs = lh   # sieved values (left hand side)
                rhs = [rh] # sieved values - n (right hand side)
                rAs = [rA] # root_As (cofactor of lhs)
                i = 0
                for field in bitfields:
                    if field & masks[col]:
                        vec, (lh, rh, rA) = smooth[i]
                        lhs += list(all_vec & vec) + lh
                        all_vec ^= vec
                        rhs += [rh]
                        rAs += [rA]
                    i += 1
                factor = gcd(listprod(rAs)*listprod(lhs) - listprod(rhs), n)
                if 1 < factor < n: return factor
        
        except IndexError: pass
        
        bound *= 1.2
def isprime(n, tb=(3,5,7,11), eb=(2,), mrb=()):      # TODO: more streamlining
    # tb: trial division basis
    # eb: Euler's test basis
    # mrb: Miller-Rabin basis
    
    # This test suite's first false positve is unknown but has been shown to be greater than 2**64.
    # Infinitely many are thought to exist.
    
    if n%2 == 0 or n < 13 or n == isqrt(n)**2: return n in (2, 3, 5, 7, 11) # Remove evens, squares, and numbers less than 13
    if any(n%p == 0 for p in tb): return n in tb                            # Trial division
    
    for b in eb:                                                            # Euler's test
        if b >= n: continue
        if not pow(b, n-1, n) == 1: return False
        r = n - 1
        while r%2 == 0: r /= 2
        c = pow(b, r, n)
        if c == 1: continue
        while c != 1 and c != n-1: c = pow(c, 2, n)
        if c == 1: return False
    
    s, d = pfactor(n)
    if not sprp(n, 2, s, d): return False
    if n < 2047: return True
    if n >= 3825123056546413051: # BPSW has two phases: SPRP with base 2 and SLPRP.  We just did the SPRP; now we do the SLPRP:
        d = 5
        while True:
            if gcd(d, n) > 1:
                p, q = 0, 0
                break
            if jacobi(d, n) == -1:
                p, q = 1, (1 - d) / 4
                break
            d = -d - 2*d/abs(d)
        if p == 0: return n == d
        s, t = pfactor(n + 2)
        u, v, u2, v2, m = 1, p, 1, p, t/2
        k = q
        while m > 0:
            u2, v2, q = (u2*v2)%n, (v2*v2-2*q)%n, (q*q)%n
            if m%2 == 1:
                u, v = u2*v+u*v2, v2*v+u2*u*d
                if u%2 == 1: u += n
                if v%2 == 1: v += n
                u, v, k = (u/2)%n, (v/2)%n, (q*k)%n
            m /= 2
        if (u == 0) or (v == 0): return True
        for i in xrange(1, s):
            v, k = (v*v-2*k)%n, (k*k)%n
            if v == 0: return True
        return False
    
    if not mrb:
        if   n <             1373653: mrb = [3]
        elif n <            25326001: mrb = [3,5]
        elif n <          3215031751: mrb = [3,5,7]
        elif n <       2152302898747: mrb = [3,5,7,11]
        elif n <       3474749660383: mrb = [3,5,6,11,13]
        elif n <     341550071728321: mrb = [3,5,7,11,13,17]   # This number is also a false positive for primes(19+1).
        elif n < 3825123056546413051: mrb = [3,5,7,11,13,17,19,23]   # Also a false positive for primes(31+1).
    return all(sprp(n, b, s, d) for b in mrb)                               # Miller-Rabin