def computeN3Factors():
    A = gmpy2.ceil(gmpy2.mul(2, gmpy2.sqrt(gmpy2.mul(6, N3))))
    X = gmpy2.ceil(
        gmpy2.sqrt(
            gmpy2.sub(
                pow(A, 2),
                gmpy2.mul(24, N3)
            )
        )
    )
    p = gmpy2.ceil(gmpy2.div(gmpy2.sub(A, X), 6)) # Only round one.
    q = gmpy2.div(N3, p)
    confirmed(N3, p, q)
Exemple #2
0
 def calc_brute_force(self):
     a = ceil(sqrt(self.n))
     for n in xrange(1, 2 ** 20):
         p, q = self._calc_factors(add(a, n))
         if self._check_sol(p, q):
             return p, q
         #self.log.print_progress(n)
     else:
         raise ValueError("Cannot factor {}".format(self.n))
Exemple #3
0
def fermat(n):
    a = int(gmpy2.ceil(gmpy2.isqrt(n)))
    b2 = (a**2) - n
    step = 0
    while not gmpy2.is_square(b2):
        a += 1
        b2 = (a**2) - n
        step += 1
        print(n, step, a, b2)
    return a - gmpy2.isqrt(b2), a + gmpy2.isqrt(b2)
Exemple #4
0
def main():
    # predefine these, we will stop overwriting them when ready to run the big numbers
    p=mpz('13407807929942597099574024998205846127'
         '47936582059239337772356144372176403007'
         '35469768018742981669034276900318581848'
         '6050853753882811946569946433649006084171'
         )
    g=mpz('117178298803662070095161175963353670885'
         '580849999989522055999794590639294997365'
         '837466705721764714603129285948296754282'
         '79466566527115212748467589894601965568'
        )
    y=mpz('323947510405045044356526437872806578864'
         '909752095244952783479245297198197614329'
         '255807385693795855318053287892800149470'
         '6097394108577585732452307673444020333'
         )

    log.info("Starting Discrete Log Calculation")
    log.info("p: %i", p)
    log.info("g: %i", g)
    log.info("y: %i", y)

    m = gmpy2.ceil(gmpy2.sqrt(p))
    log.info("m: %i", m)

    # custom range since builtin has a size limit
    long_range = lambda start, stop: iter(itertools.count(start).next, stop)
    chunk_size = 100000
    
    if m < 100000:
        chunk_size = m
    
    stop_at = chunk_size
    start = 0

    while True:
        chunk = {}
        log.info("Starting chunk from %i to %i", start, stop_at)
        for i in xrange(start, stop_at):
            chunk[gmpy2.powmod(g,i,p)] = i
        for t in long_range(0,m):
            expone = mpz(gmpy2.mul(-m,t))
            g_term = gmpy2.powmod(g, expone, p)
            res = gmpy2.f_mod(gmpy2.mul(y, g_term), p)
            if res in chunk:
                s = chunk[res]
                dc = gmpy2.f_mod(mpz(gmpy2.add(s, gmpy2.mul(m,t))), p)
                log.info("DC LOG FOUND")
                log.info("dc: %i", dc)
                return
        log.info("Completed chunk run: %i to %i  no DC yet :(", start, stop_at)
        start = stop_at
        stop_at += chunk_size
Exemple #5
0
def fermat_factor(n):
    assert n % 2 != 0  # Odd integers only

    a = gmpy2.ceil(gmpy2.sqrt(n))
    b2 = gmpy2.square(a) - n
    while not is_square(b2):
        a += 1
        b2 = gmpy2.square(a) - n

    factor1 = a + gmpy2.sqrt(b2)
    factor2 = a - gmpy2.sqrt(b2)
    return int(factor1), int(factor2)
Exemple #6
0
def factor3(n):
    a = ceil(sqrt(6 * n)) - 0.5
    x_square = a**2 - 6 * n
    x = sqrt(x_square)
    if (a - x) % 3 == 0:  # 3p<2q => p<q
        return mpz((a - x) / 3)
    elif (a - x) % 2 == 0:  # 2q<3p
        q = (a - x) / 2
        if q < n / q:
            return mpz(q)
        else:
            return mpz(n / q)
def fermat_factor(n):
    assert n % 2 != 0  # Odd integers only

    a = gmpy2.ceil(gmpy2.sqrt(n))
    b2 = gmpy2.square(a) - n
    while not is_square(b2):
        a += 1
        b2 = gmpy2.square(a) - n

    factor1 = a + gmpy2.sqrt(b2)
    factor2 = a - gmpy2.sqrt(b2)
    return int(factor1), int(factor2) 
Exemple #8
0
    def encode(self, seq):
        assert len(seq) == len(self.SNPRefList)

        L = [-1, -1]
        U = [-1, -1]
        L[0] = mpz(0)
        U[0] = mpz(self.maxSeed)
        n = len(seq)
        for i in range(1, n + 1):
            probs = self.condProb(seq[:i])
            sortInd = np.argsort(probs)
            assignedRangeSize = [0] * 3
            available = U[(i - 1) % 2] - L[(i - 1) % 2] + 1
            if probs[sortInd[0]] * available < self.powOfThree[n - i]:
                assignedRangeSize[sortInd[0]] = self.powOfThree[n - i]
            else:
                assignedRangeSize[sortInd[0]] = mpz(
                    gmpy2.ceil(probs[sortInd[0]] * available))
            available -= assignedRangeSize[sortInd[0]]
            probs[sortInd[0]] = 0
            probs = probs / sum(
                probs)  #re-normalize the remaining two probabilities
            if probs[sortInd[1]] * available < self.powOfThree[n - i]:
                assignedRangeSize[sortInd[1]] = self.powOfThree[n - i]
            else:
                assignedRangeSize[sortInd[1]] = mpz(
                    gmpy2.ceil(probs[sortInd[1]] * available))
            assignedRangeSize[
                sortInd[2]] = available - assignedRangeSize[sortInd[1]]
            L[i % 2] = L[(i - 1) % 2] + sum(assignedRangeSize[:seq[i - 1]])
            U[i % 2] = L[(i - 1) % 2] + sum(
                assignedRangeSize[:(seq[i - 1] + 1)]) - 1
        #Don't use random.randint for big integer. Sometimes they might be correct on a system, but sometimes they are not.
        #I encounter this problem when running this script with condor on icsil1-cluster.epfl.ch. The function generates very strange and unexpected integers.
        #seed = random.randint(L[n%2], U[n%2])
        tmp = random.randint(0, 2**30)
        randomState = gmpy2.random_state(tmp)
        seed = gmpy2.mpz_random(randomState,
                                U[n % 2] - L[n % 2] + 1) + L[n % 2]
        return seed
Exemple #9
0
 def decode(self, seed):
     L = [-1, -1]
     U = [-1, -1]
     L[0] = mpz(0)
     U[0] = mpz(self.maxSeed)
     n = len(self.SNPRefList)
     seq = [-1] * n
     for i in range(1, n + 1):
         probs = self.condProb(seq[:i])
         sortInd = np.argsort(probs)
         assignedRangeSize = [0] * 3
         available = U[(i - 1) % 2] - L[(i - 1) % 2] + 1
         if probs[sortInd[0]] * available < self.powOfThree[n - i]:
             assignedRangeSize[sortInd[0]] = self.powOfThree[n - i]
         else:
             assignedRangeSize[sortInd[0]] = mpz(
                 gmpy2.ceil(probs[sortInd[0]] * available))
         available -= assignedRangeSize[sortInd[0]]
         probs[sortInd[0]] = 0
         probs = probs / sum(
             probs)  #re-normalize the remaining two probabilities
         if probs[sortInd[1]] * available < self.powOfThree[n - i]:
             assignedRangeSize[sortInd[1]] = self.powOfThree[n - i]
         else:
             assignedRangeSize[sortInd[1]] = mpz(
                 gmpy2.ceil(probs[sortInd[1]] * available))
         assignedRangeSize[
             sortInd[2]] = available - assignedRangeSize[sortInd[1]]
         if seed < L[(i - 1) % 2] + sum(assignedRangeSize[:1]):
             seq[i - 1] = 0
         elif seed < L[(i - 1) % 2] + sum(assignedRangeSize[:2]):
             seq[i - 1] = 1
         elif seed < L[(i - 1) % 2] + sum(assignedRangeSize[:3]):
             seq[i - 1] = 2
         else:
             raise ValueError("Invalid Seed")
         L[i % 2] = L[(i - 1) % 2] + sum(assignedRangeSize[:seq[i - 1]])
         U[i % 2] = L[(i - 1) % 2] + sum(
             assignedRangeSize[:(seq[i - 1] + 1)]) - 1
     return seq
Exemple #10
0
def challenge3():
    """
    Valid when |3p - 2q| < N^(1/4)

    Solving
    >>> 6N = A^2 - i^2 - A + i
    

    >>> [ax^2 + bx + c              = 0]
    >>>  1i^2 - 1i - (A^2 - A - 6N) = 0

    Therefore:

        a = 1
        b = -1
        c = (A^2 - A - 6N)
    """

    print("> Challenge 3")
    N = 720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929
    A = gmpy2.ceil(gmpy2.sqrt(6*N))
    
    a = gmpy2.mpz(1)
    b = gmpy2.mpz(-1)
    c = gmpy2.mpz(-(A**2 - A - 6*N))

    # Solving using quadratic formula
    # 
    #   x = (-b (+/-) b^2 - 4ac) / 2a
    #
    # b^2 - 4ac
    det = gmpy2.isqrt(b**2 - 4*a*c)

    plus = gmpy2.div(-b + det, 2*a)
    minus = gmpy2.div(-b - det, 2*a)

    answers = [plus, minus]

    for i in answers:

        # check for correct answer
        p = gmpy2.mpz(gmpy2.div(A + i - 1, 3))
        q = gmpy2.mpz(gmpy2.div(A - i, 2))

        # values found
        if p*q == N:
            printSmallest(p, q)

            return


    raise(Exception("[Challenge 3] > Could not find p or q"))
Exemple #11
0
def is_good_pair(p: int, q: int) -> Optional[Tuple[int, int]]:
    """Returns the encryption modulus and totient for the given primes.
    :param p: One of the two primes to be used for encryption.
    :type p: int
    :param q: The other prime used for encryption.
    :type q: int
    :returns: Either the encryption modulus and the totient, or None.
    :rtype: Optional[Tuple[int, int]]"""
    n = p*q
    k = gmpy2.ceil(gmpy2.log2(n))
    if abs(p - q) > 2**(k/2 - 100):
        return n, n - (p + q - 1)
    return None
def q1():
    N = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581

    rt = gmpy2.sqrt(N)
    A = gmpy2.ceil(rt)
    A2 = pow(A, 2)

    assert A2 > N

    x = gmpy2.sqrt(gmpy2.sub(A2, N))

    p = gmpy2.sub(A, x)
    q = gmpy2.add(A, x)
    gotcha(N, p, q)
def q1():
    N = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581

    rt = gmpy2.sqrt(N)
    A = gmpy2.ceil(rt)
    A2 = pow(A, 2)

    assert A2 > N

    x = gmpy2.sqrt(gmpy2.sub(A2, N))

    p = gmpy2.sub(A, x)
    q = gmpy2.add(A, x)
    gotcha(N, p, q)
def q3():
    N = 720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929

    rt = gmpy2.sqrt(gmpy2.mul(N, 6))
    A = gmpy2.ceil(rt)

    A2 = pow(A, 2)
    assert A2 > N

    x = gmpy2.sqrt(gmpy2.sub(A2, N))
    x = gmpy2.mul(x, 3 / 2)
    p = gmpy2.sub(A, x)
    q = gmpy2.add(A, x)
    gotcha(N, p, q)
def question2():
    #25464796146996183438008816563973942229341454268524157846328581927885777969985222835143851073249573454107384461557193173304497244814071505790566593206419759

    N = gmpy2.mpfr(
        "648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877",
        1050)
    A = gmpy2.ceil((gmpy2.sqrt(N)))
    #print("A:",A)
    i = 1
    while i < 2**20:
        #print("K:",k)
        x = gmpy2.ceil(gmpy2.sqrt(gmpy2.square(A) - N))

        #print("x:",x)
        p = A + x
        q = A - x
        if (N == gmpy2.mul(p, q)):
            if (p > q):
                p, q = q, p
            print("found pq:", p, q)
            break
        A += 1
        i += 1
Exemple #16
0
def FermatFactor(N):
  A = gmpy2.mpz( gmpy2.ceil( gmpy2.sqrt(N) ) )
  B2 = gmpy2.sub( gmpy2.square(A), N )

  while not gmpy2.is_square(B2): 
    A = gmpy2.add( A, gmpy2.mpz("1") )
    B2 = gmpy2.sub( gmpy2.square(A), N )
  
  B = gmpy2.sqrt(B2)
  P = gmpy2.mpz( gmpy2.sub( A, B ) )
  Q = gmpy2.mpz( gmpy2.add( A, B ) )
  if not checkFactors(P,Q,N):
    raise Exception("Bad factors generated")
  return ( P, Q )
def q3():
    N = 720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929

    rt = gmpy2.sqrt(gmpy2.mul(N, 6))
    A = gmpy2.ceil(rt)

    A2 = pow(A, 2)
    assert A2 > N

    x = gmpy2.sqrt(gmpy2.sub(A2, N))
    x = gmpy2.mul(x, 3/2)
    p = gmpy2.sub(A, x)
    q = gmpy2.add(A, x)
    gotcha(N, p, q)
def ex3():
    N = mpz(
        720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929
    )
    sqrt_6N = sqrt(6 * N)
    sqrt_6N_decimal = sqrt_6N % 1
    if sqrt_6N_decimal < 0.5:
        A = floor(sqrt_6N) + 0.5
    else:
        A = ceil(sqrt_6N)
    x = sqrt(A**2 - 6 * N)
    # P = 3 * p
    # Q = 2 * q
    P = A - x
    p = mpz(P / 3)
    print(p)
Exemple #19
0
def challenge1():

    print("> Challenge 1")
    N = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581
    N_sqrt = gmpy2.sqrt(N)

    # A = round(√N)
    A = gmpy2.ceil(N_sqrt)

    # x = √(A^2 - N)
    x = gmpy2.sqrt(pow(A, 2) - N)

    p = A - x
    q = A + x

    printSmallest(p, q)

    return p, q, N
def q2():
    N = 648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877

    rt = gmpy2.sqrt(N)
    A = gmpy2.ceil(rt)

    q = 0
    p = 0

    while not gotcha(N, p, q):
        A2 = pow(A, 2)
        assert A2 > N

        x = gmpy2.sqrt(gmpy2.sub(A2, N))

        p = gmpy2.sub(A, x)
        q = gmpy2.add(A, x)
        assert N == gmpy2.mul(p, q)
        A += 1
def q2():
    N = 648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877

    rt = gmpy2.sqrt(N)
    A = gmpy2.ceil(rt)

    q = 0
    p = 0

    while not gotcha(N, p, q):
        A2 = pow(A, 2)
        assert A2 > N

        x = gmpy2.sqrt(gmpy2.sub(A2, N))

        p = gmpy2.sub(A, x)
        q = gmpy2.add(A, x)
        assert N == gmpy2.mul(p, q)
        A += 1
Exemple #22
0
def challenge2():
    """
    Uses Fermant factorisation
    """

    print("> Challenge 2")
    N = 648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877
    
    N_sqrt = gmpy2.sqrt(N)

    A = gmpy2.ceil(N_sqrt)
    b2 = A * A - N

    while not gmpy2.is_square(gmpy2.mpz(b2)):

        A = A + 1
        b2 = A * A - N

    # Works out p and q
    q = A - gmpy2.sqrt(b2)
    p = N / q

    printSmallest(p, q)
Exemple #23
0
 def findFactorsCaseOne(self):
     print("===========================================")
     print("Modulus N is: " + str(self.N))
     #A = (p+q)/2 == ceil(sqrt(N))
     A = gmpy2.ceil(gmpy2.sqrt(self.N))
     print("A is: " + str(A))
     #x = sqrt(A^2 - N)
     A_square = gmpy2.mul(A, A)
     x = gmpy2.sqrt(gmpy2.sub(A_square, self.N))
     print("x is: " + str(x))
     #p = A - x AND q = A + x
     self.p = gmpy2.sub(A, x)
     self.q = gmpy2.add(A, x)
     prod = gmpy2.mul(self.p, self.q)
     print("Product of pq is: " + str(prod))
     if prod == self.N:
         print("We have got the factors RIGHT")
     else:
         print("We didn't get the factors")
         print(self.p)
         print(self.q)
         self.p = 0
         self.q = 0
     print("===========================================")
Exemple #24
0
 def findFactorsCaseThree(self):
     print("===========================================")
     print("Modulus N is: " + str(self.N))
     #A = ceil(2 * sqrt(6N))
     A = gmpy2.ceil(gmpy2.mul(mpz(2), gmpy2.sqrt(gmpy2.mul(mpz(6), self.N))))
     print("A is: " + str(A))
     #X = sqrt(A^2 - 24N)
     A_square = gmpy2.mul(A, A)
     X = gmpy2.sqrt(gmpy2.sub(A_square, gmpy2.mul(mpz(24), self.N)))
     print("X is: " + str(X))
     #q = (A + X)/4 AND p = N/q
     self.q = gmpy2.f_div(mpz(gmpy2.add(A, X)), mpz(4))
     self.p = gmpy2.div(self.N, self.q)
     prod = gmpy2.mul(self.p, self.q)
     print("Product of pq is: " + str(prod))
     if prod == self.N:
         print("We have got the factors RIGHT")
     else:
         print("We didn't get the factors")
         print(self.p)
         print(self.q)
         self.p = 0
         self.q = 0
     print("===========================================")
Exemple #25
0
def factor(N):
    # type: (int) -> int
    """
    Computes a factorization of N using pure Fermat approach

    Expects N to be odd (i.e. 3, 5, etc.) and throws a ValueError otherwise.
    See: https://en.wikipedia.org/wiki/Fermat%27s_factorization_method

    Args:
        N: the number to factorize

    Returns:
        A factor of N
    """

    if N & 1 == 0:
        return gmpy2.mpz(2)

    if gmpy2.get_context().precision < PRECISION_BITS:
        adjust_gmpy2_precision(PRECISION_BITS)

    logger = logging.getLogger(LOGGER)

    a = gmpy2.mpz(gmpy2.ceil(gmpy2.sqrt(N)))
    b = a * a - N

    while not gmpy2.is_square(b):
        a = a + 1
        b = a * a - N

        logger.info("Iteration {} and {}".format(a, b))

    # NOTE: must convert to integer before subtraction
    result = a - gmpy2.mpz(gmpy2.sqrt(b))

    return result
Exemple #26
0
 def findFactorsCaseTwo(self):
     print("===========================================")
     print("Modulus N is: " + str(self.N))
     #A = (p+q)/2 AND A can be any where from ceil(sqrt(N)) to ceil(sqrt(N)) + 2 ^ 20
     A = gmpy2.ceil(gmpy2.sqrt(self.N))
     print("A is: " + str(A))
     upperRange = 2 ** 20
     for index in range (0, upperRange + 1):
         #x = sqrt(A^2 - N)
         A_square = gmpy2.mul(A, A)
         diff = gmpy2.sub(A_square, self.N)
         x = mpz(gmpy2.sqrt(diff))
         #p = A - x AND q = A + x
         self.p = gmpy2.sub(A, x)
         self.q = gmpy2.add(A, x)
         prod = gmpy2.mul(self.p, self.q)
         if prod == self.N:
             print("We have got the factors RIGHT")
             return
         else:
             A = A + 1
     print("We didn't get the factors")
     self.p = 0
     self.q = 0
N1 += '0071584560878577663743040086340742855278549092581'

N2 = '6484558428080716696628242653467722787263437207069762630604390703787'
N2 += '9730861808111646271401527606141756919558732184025452065542490671989'
N2 += '2428844841839353281972988531310511738648965962582821502504990264452'
N2 += '1008852816733037111422964210278402893076574586452336833570778346897'
N2 += '15838646088239640236866252211790085787877'

N3 = '72006226374735042527956443552558373833808445147399984182665305798191'
N3 += '63556901883377904234086641876639384851752649940178970835240791356868'
N3 += '77441155132015188279331812309091996246361896836573643119174094961348'
N3 += '52463970788523879939683923036467667022162701835329944324119217381272'
N3 += '9276147530748597302192751375739387929'

diff = 1

gmpy2.set_context(gmpy2.context(precision = 3000))

N = mpz(N3)
lowerBound = mpz(gmpy2.ceil(gmpy2.mul(2, gmpy2.sqrt(gmpy2.mul(6, N)))))

for i in range(0, diff):
    A = gmpy2.div(mpfr(gmpy2.add(lowerBound, i)), 2)
    SquareA = gmpy2.square(A)
    x = gmpy2.sqrt(gmpy2.sub(SquareA, gmpy2.mul(6, N)))
    if gmpy2.is_integer(gmpy2.div(gmpy2.sub(A, x), 3)) and gmpy2.is_integer(gmpy2.div(gmpy2.add(A, x), 2)):
        print 'p = ' + str(mpz(gmpy2.div(gmpy2.sub(A, x), 3)))
        print 'q = ' + str(mpz(gmpy2.div(gmpy2.add(A, x), 2)))
    else:
        print 'p = ' + str(mpz(gmpy2.div(gmpy2.add(A, x), 3)))
        print 'q = ' + str(mpz(gmpy2.div(gmpy2.sub(A, x), 2)))
Exemple #28
0
# brew install gmp
# brew install mpfr
# brew install libmpc
# bin/easy_install http://gmpy.googlecode.com/files/gmpy2-2.0.0b1.zip
# wget http://www.math.umbc.edu/~campbell/Computers/Python/numbthy.py

from __future__ import division  # division with floats

import gmpy2

gmpy2.get_context().precision = 1100

N = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581

A = gmpy2.ceil(gmpy2.sqrt(N))
A2 = A**2

print "N    :", int(N)
print "sq(A): %.f" % gmpy2.sqrt(N)
print "round:", int(gmpy2.ceil(gmpy2.sqrt(N)))
print "A^2  :", int(A2)

assert A2 > N

x = gmpy2.sqrt(A2 - N)
print "x    :", int(x)

p = gmpy2.sub(A, x)
q = gmpy2.add(A, x)

print "p*q  :", int(gmpy2.mul(p, q))
Exemple #29
0
def part1():
    A = gmpy2.ceil(gmpy2.sqrt(N))
    x = gmpy2.mpz(gmpy2.ceil(gmpy2.sqrt(A**2 - N)))
    p = gmpy2.sub(A, x)
    q = gmpy2.add(A, x)
    return p
Exemple #30
0
    q = A - x
    return q if p * q == N else -1


def int_to_bytes(value, length):  ## Function to be used in Q4.
    result = []
    for i in range(0, length):
        result.append(value >> (i * 8) & 0xff)
    result.reverse()
    return bytes(result)


# Q1 (Given  : |p - q| < 2*N^0.25)

N1 = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581
A1 = int(gmpy2.ceil(gmpy2.sqrt(N1)))
print("Ans 1. : %d" % factor(A1, N1))

# Q2 (Given : |p - q| < 2^11 * N^0.25)

N2 = 648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877
A2 = int(gmpy2.ceil(gmpy2.sqrt(N2)))
for i in range(2**20):
    q = factor(A2 + i, N2)
    if q != -1:
        print("Ans 2. : %d" % q)
        break

# Q3 (Given : |3p - 2q| < N^0.25)

N3 = 720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929
N1 = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581

# Tests
print("test")
print(169.0 % 1)
print(38.509658609 % 1)

# Challenge 1

gmpy2.get_context().precision = 1030

temp = gmpy2.sqrt(N1)

# print("t = ", temp)

A = gmpy2.ceil(temp)

print("A = ", A)

temp2 = A * A

temp3 = temp2 - N1

x = gmpy2.sqrt(temp3)

p = A - x
p4 = p
print("p= ", p)
q = A + x
q4 = q
print("q= ", q)
Exemple #32
0
def factor1(n):
    a = mpz(ceil(sqrt(n)))
    x = sqrt(a**2 - n)
    return mpz(a - x)
import gmpy2
from gmpy2 import mpz
from gmpy2 import mpfr

gmpy2.get_context().precision = 2000

N1 = mpz("179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581")
A1 = gmpy2.isqrt(N1) + 1 #A = (p+q/2) and is close to sqrt(N), so sqrt(N) is used to estimate A
x1 = gmpy2.isqrt(A1**2 - N1)
p1 = A1 - x1
q1 = A1 + x1
print p1

N2 = mpz("648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877")
A2 = gmpy2.isqrt(N2) + 1
while not gmpy2.is_square(A2**2 - N2):
    A2 = A2 + 1
print A2 - gmpy2.isqrt(A2**2 - N2)

N3 = mpz("720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929")
A3 = gmpy2.ceil(gmpy2.sqrt(6*N3)*2)/2
print (A3 - gmpy2.sqrt(A3**2 - 6*N3))/3

e_m = mpz("22096451867410381776306561134883418017410069787892831071731839143676135600120538004282329650473509424343946219751512256465839967942889460764542040581564748988013734864120452325229320176487916666402997509188729971690526083222067771600019329260870009579993724077458967773697817571267229951148662959627934791540")
phi = (p1 - 1)*(q1 - 1)
d = gmpy2.invert(65537, phi)
d_m = gmpy2.powmod(e_m, d, N1)
hex = d_m.digits(16)
hex = hex[hex.find("00")+2:]
print hex.decode("hex")
Exemple #34
0
def fac3(N):
    root6N = 2 * gmpy2.sqrt(6 * N)
    Ax2 = gmpy2.ceil(root6N)
    A = Ax2 / 2
    x = gmpy2.sqrt(A**2 - 6 * N)
    p = (A - x) / 3
    q = (A + x) / 2
    print('p:\n' + str(int(p)))
    print('q:\n' + str(int(q)))
    return (int(p), int(q))


rootN = gmpy2.sqrt(N)
#print('rootN:', rootN)
#A = gmpy2.ceil(gmpy2.sqrt(N))
A = gmpy2.ceil(rootN)
rootNsq = rootN**2
Ncalc = N - rootNsq
#print('A:', A, 'A>N:', A>N, 'A>rootN:', A>rootN, 'Ncalc:', Ncalc)

# Since A is the exact mid-point between p and q there is an integer x
# such that p=A−x and q=A+x.

# But then N=pq=(A−x)(A+x)=A2−x2 and therefore x=A2−N**.5

res1 = gmpy2.mpz(A**2 - N)
#print('res1:', res1)

x = gmpy2.sqrt(A**2 - N)
#print('x:', x)
# Now, given x and A you can find the factors p and q of N since p=A−x and q=A+x.
def good_pair(p: int, q: int) -> int:
    n = p * q
    k = gmpy2.ceil(gmpy2.log2(n))
    if abs(p - q) > 2**(k / 2 - 100):
        return n
    return 0
Exemple #36
0
def is_prime_by_AKS(n):
    """
    使用AKS算法确定n是否是一个素数
    True:n是素数
    False:n是合数
    """
    def __is_integer__(n):
        """
        判断一个数是否是整数
        """
        i = gmpy2.mpz(n)
        f = n - i
        return not f

    def __phi__(n):
        """
        欧拉函数,测试小于n并与n互素的个数
        """
        res = gmpy2.mpz(n)
        a = gmpy2.mpz(n)
        for i in range(2, a + 1):
            if a % i == 0:
                res = res // i * (i - 1)
                while a % i == 0:
                    a //= i
        if a > 1:
            res = res // a * (a - 1)
        return res

    def __gcd__(a, b):
        """
        计算a b的最大公约数
        """
        if b == 0:
            return a
        return __gcd__(gmpy2.mpz(b), gmpy2.mpz(a) % gmpy2.mpz(b))

    print("步骤1, 确定%d是否是纯次幂" % n)
    for b in range(2, gmpy2.mpz(gmpy2.floor(gmpy2.log2(n))) + 1):
        a = n**(1 / b)
        if __is_integer__(a):
            return False

    print("步骤2,找到一个最小的r,符合o_r(%d) > (log%d)^2" % (n, n))
    maxk = gmpy2.mpz(gmpy2.floor(gmpy2.log2(n)**2))
    maxr = max(3, gmpy2.mpz(gmpy2.ceil(gmpy2.log2(n)**5)))
    nextR = True
    r = 0
    for r in range(2, maxr):
        if nextR == False:
            break
        nextR = False
        for k in range(1, maxk + 1):
            if nextR == True:
                break
            nextR = (gmpy2.mpz(n**k % r) == 0) or (gmpy2.mpz(n**k % r) == 1)
    r = r - 1  # 循环多增加了一层
    print("r = %d" % r)

    print("步骤3,如果 1 < gcd(a, %d) < %d,对于一些 a <= %d, 输出合数" % (n, n, r))
    for a in range(r, 1, -1):
        g = __gcd__(a, n)
        if g > 1 and g < n:
            return False

    print("步骤4,如果n=%d <= r=%d,输出素数" % (n, r))
    if n <= r:
        return True

    print("步骤5")
    print("遍历a从1到\sqrt{\phi(r=%d)}logn=%d" % (r, n))
    print("如果(X+a)^%d != X^%d+a mod {X^%d-1, %d}$输出合数" % (n, n, r, n))
    # 构造P = (X+a)^n mod (X^r-1)

    print("构造多项式(X+a)^%d,并且进行二项式展开" % n)
    X = multi_ysymbols('X')
    a = multi_ysymbols('a')
    X_a_n_expand = binomial_expand(ypolynomial1(X, a), n)
    print(X_a_n_expand)
    X.pow(r)
    reduce_poly = ypolynomial1(X, ysymbol(value=-1.0))
    print("构造消减多项式 %s" % reduce_poly)
    print("进行运算 (X+a)^%d mod (X^%d-1)" % (n, r))
    r_equ = ypolynomial_mod(X_a_n_expand, reduce_poly)
    print("得到余式: %s" % r_equ)
    print("进行运算'余式' mod %d 得到式(A)" % n)
    A = ypolynomial_reduce(r_equ, n)
    print("A = %s" % A)
    print("B = x^%d+a mod x^%d-1" % (n, r))
    B = ypolynomial1(multi_ysymbols('X', power=31), a)
    B = ypolynomial_mod(B, reduce_poly)
    print("B = %s" % B)
    C = ypolynomial_sub(A, B)
    print("C = A - B = %s" % C)
    maxa = math.floor(math.sqrt(__phi__(r)) * math.log2(n))
    print("遍历a = 1 to %d" % maxa)
    print("检查每个'%s = 0 (mod %d)'" % (C, n))
    for a in range(1, maxa + 1):
        print("检查a = %d" % a)
        C.set_variables_value(a=a)
        v = C.eval()
        if v % n != 0:
            return False

    print("步骤6 输出素数")
    return True
import gmpy2
from gmpy2 import mpz

__author__ = 'Qubo'

N1 = '17976931348623159077293051907890247336179769789423065727343008115'
N1 += '77326758055056206869853794492129829595855013875371640157101398586'
N1 += '47833778606925583497541085196591615128057575940752635007475935288'
N1 += '71082364994994077189561705436114947486504671101510156394068052754'
N1 += '0071584560878577663743040086340742855278549092581'

gmpy2.set_context(gmpy2.context(precision=2000))

N = mpz(N1)
A = gmpy2.ceil(gmpy2.sqrt(N))
SquareA = gmpy2.square(A)

if gmpy2.is_square(mpz(gmpy2.sub(SquareA, N))):
    x = gmpy2.sqrt(gmpy2.sub(SquareA, N))
    print 'p = ' + str(mpz(gmpy2.sub(A, x)))
    print 'q = ' + str(mpz(gmpy2.add(A, x)))
else:
    print 'x is not square, must be wrong...'
Exemple #38
0
def random_from_interval(random_state, low, high, m=32):
    M = int(g.ceil(g.log2(high)))
    random = g.mpz_urandomb(random_state, M + m)
    c = g.add(g.f_mod(random, g.add(g.sub(high, low), 1)), low)
    return c
Exemple #39
0
 def calc_near(self):
     a = ceil(sqrt(self.n))
     p, q = self._calc_factors(a)
     assert self._check_sol(p, q)
     assert gmpy2.is_prime(p)
     return p, q
from gmpy2 import mpz

__author__ = 'Qubo'

N1 = '17976931348623159077293051907890247336179769789423065727343008115'
N1 += '77326758055056206869853794492129829595855013875371640157101398586'
N1 += '47833778606925583497541085196591615128057575940752635007475935288'
N1 += '71082364994994077189561705436114947486504671101510156394068052754'
N1 += '0071584560878577663743040086340742855278549092581'

N2 = '6484558428080716696628242653467722787263437207069762630604390703787'
N2 += '9730861808111646271401527606141756919558732184025452065542490671989'
N2 += '2428844841839353281972988531310511738648965962582821502504990264452'
N2 += '1008852816733037111422964210278402893076574586452336833570778346897'
N2 += '15838646088239640236866252211790085787877'

diff = 2 ** 20

gmpy2.set_context(gmpy2.context(precision = 3000))

N = mpz(N2)
lowerBound = mpz(gmpy2.ceil(gmpy2.sqrt(N)))

for i in range(0, diff):
    A = gmpy2.add(lowerBound, i)
    SquareA = gmpy2.square(A)
    if gmpy2.is_square(gmpy2.sub(SquareA, N)):
        x = mpz(gmpy2.sqrt(gmpy2.sub(SquareA, N)))
        print 'p = ' + str(gmpy2.sub(A, x))
        print 'q = ' + str(gmpy2.add(A, x))
Exemple #41
0
def factor(A, N):  # Assuming A = (p + q)/2 ## Function to be used in Q1,Q2.
    A_square = int(gmpy2.ceil(gmpy2.square(A)))
    x = int(gmpy2.ceil(gmpy2.sqrt(A_square - N)))
    p = A + x
    q = A - x
    return q if p * q == N else -1
        tmp_2 = gmpy2.powmod(tmp_1, i, p)
        tmp_3 = gmpy2.powmod(gmpy2.mul(b, tmp_2), 1, p)

        giant_x.append(tmp_3)
    return giant_x


def get_result(baby_x, giant_x, m):
    for x_b in baby_x:
        for x_g in giant_x:
            if x_b == x_g:
                return gmpy2.add(gmpy2.mul(giant_x.index(x_g), m),
                                 baby_x.index(x_b))


if __name__ == '__main__':
    p = int(input('输入p:'))
    a = int(input('输入α:'))
    b = int(input('输入β:'))

    ord = get_ord(p)
    print('ord:' + str(ord))
    m = int(gmpy2.ceil(gmpy2.sqrt(ord)))
    print('m=' + str(m))
    baby_x = get_baby_x(a, p, m)
    print('x_b:' + str(baby_x))
    giant_x = get_giant_x(a, b, m, p)
    print('x_g:' + str(giant_x))
    result = get_result(baby_x, giant_x, m)
    print(result)
def computeA(N):
    return gmpy2.ceil(gmpy2.sqrt(N))
def max_bits_in_digits(d):
    """
    Returns maximum number of bits fitting in given number of digits eg. 2 digits (99) fits in 7 bits
    :param d: number of digits
    """
    return gmpy2.mpz(gmpy2.ceil(d * (gmpy2.log(10) / gmpy2.log(2))))
Exemple #45
0
import numpy
import gmpy2
import math
from collections import defaultdict

from gmpy2 import mpz
gmpy2.get_context().precision=10000


N = 179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581
N=179769313486231590772930519078902473361797697894230657273430081157732675805505620686985379449212982959585501387537164015710139858647833778606925583497541085196591615128057575940752635007475935288710823649949940771895617054361149474865046711015101563940680527540071584560878577663743040086340742855278549092581
N=648455842808071669662824265346772278726343720706976263060439070378797308618081116462714015276061417569195587321840254520655424906719892428844841839353281972988531310511738648965962582821502504990264452100885281673303711142296421027840289307657458645233683357077834689715838646088239640236866252211790085787877

N=720062263747350425279564435525583738338084451473999841826653057981916355690188337790423408664187663938485175264994017897083524079135686877441155132015188279331812309091996246361896836573643119174094961348524639707885238799396839230364676670221627018353299443241192173812729276147530748597302192751375739387929
N= mpz(N)*6
A=gmpy2.ceil(gmpy2.sqrt(gmpy2.mpz(N)))
B=numpy.powmod(2,20,N)
for i in range(0,B+1):
	print i
	
#x=mpz(A*A) -N 
	A=mpz(A)
	
	z=mpz(A)*mpz(A)
#print mpz(z)+1
	y=mpz(z)-mpz(N)
	x=gmpy2.sqrt(gmpy2.mpz(y))
	p=mpz(A)-mpz(x)
	q=mpz(A)+mpz(x)
	#print p
	#print mpz(p)
gmpy2.get_context().precision=500*8


n50b = "543971971236630195076898180273"
n60b = "459344432904829185748347139878533089"
n70b = "810814527278919159798277223576982175301717"
n80b = "662875573009490731045345994740327457245824480677"
n25b = 767971435180333
test = 90283
N = gmpy2.mpz(n70b)
n_smooth = 1500
offset = 800000000
start = 0
listN = []

start = gmpy2.mpz(gmpy2.ceil(gmpy2.sqrt(N)))

def init():
    for j in range(0, offset):
        listN.append(gmpy2.sub(gmpy2.mul(gmpy2.add(start, j), gmpy2.add(start, j)), N))
    return start


def read_prime():
    list_primes = []
    with open("primes1000.txt") as fp:
        for line in fp:
            list_primes.extend([int(s) for s in re.split(r'\s+', line.strip())])
    print("list prime:")
    print(list_primes)
    return list_primes