Exemple #1
0
                                noise=0)
            G_target_normalized = out_normalizer.normalize(G_target)

            loss = build_graph_loss2(G_out, G_target_normalized)
            loss.backward()
            if step % 10 == 0:
                writer.add_scalar('loss', loss.data.item(), step)
            step += 1
            for param in gn.parameters():
                if param.grad is not None:
                    param.grad.clamp_(-3, 3)

            optimizer.step()
            schedular.step()
            if step % 10000 == 0:
                torch.save(gn.state_dict(),
                           savedir + '/model_{}.pth'.format(step))
        iter = 0
        sum_loss = 0

        # evaluation loop, done every epoch

        for i, data in tqdm(enumerate(dl_eval)):
            action, delta_state, last_state = data
            action, delta_state, last_state = action.float(), \
                delta_state.float(), last_state.float()
            if use_cuda:
                action, delta_state, last_state = action.cuda(),\
                    delta_state.cuda(), last_state.cuda()

            init_graph_features(G1,
Exemple #2
0
            G_target_normalized = out_normalizer.normalize(G_target)

            loss = build_graph_loss2(G_out, G_target_normalized)
            loss.backward()
            if step % 10 == 0:
                writer.add_scalar('loss', loss.data.item(), step)
            step += 1
            for param in gn.parameters():
                if not param.grad is None:
                    param.grad.clamp_(-3,3)

            optimizer.step()
            schedular.step()
            if step % 10000 == 0:
                torch.save(
                    gn.state_dict(),
                    savedir +
                    '/model_{}.pth'.format(step))
        iter = 0
        sum_loss = 0

        #evaluation loop, done every epoch

        for i,data in tqdm(enumerate(dl_eval)):
            action, delta_state, last_state = data
            action, delta_state, last_state = action.float(), delta_state.float(), last_state.float()
            if use_cuda:
                action, delta_state, last_state = action.cuda(), delta_state.cuda(), last_state.cuda()

            init_graph_features(G1, graph_feat_size, node_feat_size, edge_feat_size, cuda=True, bs = 200)
            load_graph_features(G1, action, last_state, delta_state, bs=200, noise = 0)