def test_ilr(self): np.random.seed(0) table = pd.DataFrame([[1, 1, 2, 2], [1, 2, 2, 1], [2, 2, 1, 1]], index=[1, 2, 3], columns=['a', 'b', 'c', 'd']) table = table.reindex(columns=np.random.permutation(table.columns)) ph = pd.Series([1, 2, 3], index=table.index) tree = gradient_linkage(table, ph) res_balances = ilr_transform(table, tree) exp_balances = pd.DataFrame([[0.693147, -5.551115e-17, 2.775558e-17], [0.000000, -4.901291e-01, -4.901291e-01], [-0.693147, 5.551115e-17, -2.775558e-17]], columns=['y0', 'y1', 'y2'], index=[1, 2, 3]) pdt.assert_frame_equal(res_balances, exp_balances)
def test_ilr(self): np.random.seed(0) table = pd.DataFrame([[1, 1, 2, 2], [1, 2, 2, 1], [2, 2, 1, 1]], index=[1, 2, 3], columns=['a', 'b', 'c', 'd']) table = table.reindex(columns=np.random.permutation(table.columns)) ph = pd.Series([1, 2, 3], index=table.index) tree = gradient_linkage(table, ph) res_balances = ilr_transform(table, tree) exp_balances = pd.DataFrame( [[0.693147, -5.551115e-17, 2.775558e-17], [0.000000, -4.901291e-01, -4.901291e-01], [-0.693147, 5.551115e-17, -2.775558e-17]], columns=['y0', 'y1', 'y2'], index=[1, 2, 3]) pdt.assert_frame_equal(res_balances, exp_balances)