def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2015, 9, 24, 1, 1)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours = 48),
                  time_step=900)

    mapfile = get_datafile(os.path.join(base_dir, 'columbia_river.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(600, 1200))
    renderer.graticule.set_DMS(True)
#     renderer.viewport = ((-123.35, 45.6), (-122.68, 46.13))
#     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))
    

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = point_line_release_spill(num_elements=5000,
                                     start_position=(-122.625,
                                                     45.609,
                                                     0.0),
                                     release_time=start_time)

    model.spills += spill1

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=5000)

    print 'adding a wind mover:'
   
#     model.movers += constant_wind_mover(8, 90, units='m/s')

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
   
    # uncertain_time_delay in hours
    c_mover = GridCurrentMover(curr_file)
    c_mover.uncertain_cross = 0  # default is .25
   
    model.movers += c_mover

    return model
def test_serialize_deserialize():
    """
    test to_dict function for Grid Current object
    create a new grid_current object and make sure it has same properties
    """

    c_grid = GridCurrentMover(curr_file, topology_file)
    serial = c_grid.serialize()
    c2 = GridCurrentMover.deserialize(serial)
    assert c_grid == c2
def test_new_from_dict():
    """
    test to_dict function for Grid Current object
    create a new grid_current object and make sure it has same properties
    """

    c_grid = GridCurrentMover(curr_file,topology_file)
    dict_ = c_grid.to_dict('create')
    c2 = GridCurrentMover.new_from_dict(dict_)
    assert c_grid == c2
def test_serialize_deserialize():
    """
    test to_dict function for Grid Current object
    create a new grid_current object and make sure it has same properties
    """

    c_grid = GridCurrentMover(curr_file, topology_file)
    serial = c_grid.serialize()
    c2 = GridCurrentMover.deserialize(serial)
    assert c_grid == c2
def test_exceptions():
    """
    Test correct exceptions are raised
    """
    with pytest.raises(ValueError):
        # file does not exist
        GridCurrentMover(os.path.join('./', 'ChesBay.CUR'))

    with pytest.raises(OSError):
        GridCurrentMover(testdata['CurrentCycleMover']['curr_bad_file'])

    with pytest.raises(TypeError):
        GridCurrentMover(curr_file, topology_file=10)
def test_uncertain_loop(uncertain_time_delay=0):
    """
    test one time step with uncertainty on the spill
    checks there is non-zero motion.
    """

    pSpill = sample_sc_release(num_le, start_pos, rel_time, uncertain=True)
    curr = GridCurrentMover(curr_file, topology_file)
    curr.uncertain_time_delay = uncertain_time_delay
    u_delta = _uncertain_loop(pSpill, curr)

    _assert_move(u_delta)

    return u_delta
def test_uncertain_loop(uncertain_time_delay=0):
    """
    test one time step with uncertainty on the spill
    checks there is non-zero motion.
    """

    pSpill = sample_sc_release(num_le, start_pos, rel_time,
                               uncertain=True)
    curr = GridCurrentMover(curr_file, topology_file)
    curr.uncertain_time_delay = uncertain_time_delay
    u_delta = _uncertain_loop(pSpill, curr)

    _assert_move(u_delta)

    return u_delta
Exemple #8
0
def setup_model():
    print 'initializing the model'
    # start with default time,duration...this will be changed when model is run
    model = Model(
    )  #change to use all defaults and set time_step also in Setup_TAP!!
    mapfile = os.path.join(setup.MapFileDir, setup.MapFileName)
    print 'adding the map: ', mapfile
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    print 'adding a GridCurrentMover:'
    c_mover = GridCurrentMover(filename=setup.curr_fn, extrapolate=True)
    model.movers += c_mover

    print 'adding a WindMover:'
    w = Wind(filename=setup.wind_fn)
    w_mover = WindMover(w)
    # w_mover = GridWindMover(wind_file=setup.w_filelist)
    model.movers += w_mover

    if setup.diff_coef is not None:
        print 'adding a RandomMover:'
        random_mover = RandomMover(diffusion_coef=setup.diff_coef)  #in cm/s
        model.movers += random_mover

    return model
Exemple #9
0
def allWeatherers(timeStep, start_time, duration, weatheringSteps, map, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, tidalFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration)
    print 'adding the map:'
    map_folder = os.path.join(data_path, map_path)
    if not(os.path.exists(map_folder)):
        print('The map folder is incorrectly set:', map_folder)
    mapfile = get_datafile( os.path.join(map_folder,map) )
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=1))
    if save_nc:
        nc_outputter = NetCDFOutput(netcdf_file, which_data='most', output_timestep=timedelta(hours=1))
        model.outputters += nc_outputter
    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover: '
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=10000)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)
    print 'adding weatherers'
    water = Water(280.92)
    wind = constant_wind(20.0, 117, 'knots')
    waves = Waves(wind, water)
    model.weatherers += Evaporation(water, wind)
    model.weatherers += Emulsification(waves)
    model.weatherers += NaturalDispersion(waves, water)
    return model
Exemple #10
0
def CurrentsAndWinds(timeStep, start_time, duration, weatheringSteps, mapfile, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, tidalFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration)
    print 'adding the map:'
    print (data_path, map_path, mapfile)
    mapfile = get_datafile(os.path.join(data_path, map_path, mapfile))
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=timestep_outputs))
    if save_nc:
        nc_outputter = NetCDFOutput('currentsAndWinds_example.nc', which_data='standard', output_timestep=timedelta(hours=timestep_outputs))
        model.outputters += nc_outputter
    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover: '
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=10000)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)
    return model
Exemple #11
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2015, 9, 24, 1, 1)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours=48),
                  time_step=900)

    mapfile = get_datafile(os.path.join(base_dir, 'columbia_river.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(600, 1200))
    renderer.graticule.set_DMS(True)
    #     renderer.viewport = ((-123.35, 45.6), (-122.68, 46.13))
    #     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = point_line_release_spill(num_elements=1000,
                                      start_position=(-122.625, 45.609, 0.0),
                                      release_time=start_time)

    model.spills += spill1

    print 'adding a RandomMover:'
    # model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'

    model.movers += constant_wind_mover(0.5, 0, units='m/s')

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))

    # uncertain_time_delay in hours
    # vec_field = TriVectorField('COOPSu_CREOFS24.nc')
    # u_mover = UGridCurrentMover(vec_field)
    c_mover = GridCurrentMover(curr_file)
    # c_mover.uncertain_cross = 0  # default is .25

    # model.movers += u_mover
    model.movers += c_mover
    model.save

    return model
Exemple #12
0
def make_model(timeStep,start_time, duration, weatheringSteps, map, uncertain, data_path, reFloatHalfLife, windFile, currFile, tidalFile,
               num_elements, depths, lat, lon, output_path, evaporation):
    #initalizing the model
    print 'initializing the model:'
    # model = Model(time_step = timeStep, start_time= start_time, duration=duration, uncertain = uncertain)
    model = Model(time_step = timeStep, start_time= start_time, duration=duration)

    #adding the map
    print 'adding the map:'
    print 'pinche path', data_path
    mapfile = get_datafile(os.path.join(data_path, map))
    model.map = MapFromBNA(mapfile, refloat_halflife = reFloatHalfLife)
    #model.map = GnomeMap()


    print 'adding a renderer'
    # renderer is a class that writes map images for GNOME results
    model.outputters += Renderer(mapfile, output_path, size=(800, 600), output_timestep=timedelta(hours=1))
    ##scripting.remove_netcdf(netcdf_file)
    #nc_outputter = NetCDFOutput(netcdf_file, which_data='most', output_timestep=timedelta(hours=1))
    #model.outputters += nc_outputter
    #adding the movers

    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, windFile))
    wind = GridWindMover(wind_file)
    wind.wind_scale = 2
    model.movers += wind

    print 'adding a current mover: '
    curr_file = get_datafile(os.path.join(data_path,currFile))
    model.movers+= GridCurrentMover(curr_file, num_method='RK4')
    #random_mover = RandomMover(diffusion_coef=10000) #in cm/sdfd
    #model.movers += random_mover

    if evaporation:
    
     #wind for evaporation
	print'adding evaporation'
    	wind = constant_wind(1, 0, 'knots')
    	water = Water(temperature=300.0, salinity=35.0)
    	model.weatherers += Evaporation(wind=wind, water=water)
    #

    print 'adding a spill'
    # for i in depths:
    #     model.spills+= point_line_release_spill(num_elements=num_elements, start_position=(lon,lat,i), release_time=start_time)
    model.spills+= point_line_release_spill(num_elements=num_elements, start_position=(lon,lat,0), release_time=start_time,
                                            end_release_time=start_time+timedelta(days=93))

    return model
def test_serialize_deserialize():
    """
    test to_dict function for Grid Current object
    create a new grid_current object and make sure it has same properties
    """

    c_grid = GridCurrentMover(curr_file, topology_file)
    serial = c_grid.serialize('webapi')
    dict_ = GridCurrentMover.deserialize(serial)
    c2 = GridCurrentMover.new_from_dict(dict_)
    assert c_grid == c2

    c_grid.update_from_dict(dict_)  # tests no failures
Exemple #14
0
def make_model(images_dir=os.path.join(base_dir,"images")):
    print "initializing the model"

    start_time = datetime(2013, 7, 23, 0)
    model = Model(start_time = start_time,
                              duration = timedelta(hours=47),	# n+1 of data in file
                              time_step = 900, # 4 hr in seconds
                              uncertain = False,
                              )
    
    mapfile = os.path.join(base_dir, './coast.bna')
    print "adding the map"
    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours
    
    print "adding renderer" 
    model.outputters += Renderer(mapfile, images_dir, size=(1800, 1600))

    print "adding a wind mover from a time-series"
    ## this is wind
    wind_file=get_datafile(os.path.join(base_dir, 'wind.WND'))
    wind = Wind(filename=wind_file)
    w_mover = WindMover(wind)
    model.movers += w_mover
    
    print "adding a current mover:"
    ## this is currents
    curr_file = get_datafile(os.path.join(base_dir, 'current.txt'))
    model.movers += GridCurrentMover(curr_file)

    ##
    ## Add some spills (sources of elements)
    ##
    print "adding 13 points in a cluster that has some small initial separation as the source of spill"
    
    for i in range(len(coor)):
        
        aaa=utmToLatLng(14,coor[i][0],coor[i][1],northernHemisphere=True)
        model.spills += point_line_release_spill(num_elements=1,
                                                start_position = (aaa[1],aaa[0], 0.0),
                                                release_time = start_time,
                                                )

    print "adding netcdf output"
    netcdf_output_file = os.path.join(base_dir,'GNOME_output.nc')
    scripting.remove_netcdf(netcdf_output_file)
    model.outputters += NetCDFOutput(netcdf_output_file, which_data='all')

    return model
def test_loop():
    """
    test one time step with no uncertainty on the spill
    checks there is non-zero motion.
    also checks the motion is same for all LEs
    """
    pSpill = sample_sc_release(num_le, start_pos, rel_time)
    curr = GridCurrentMover(curr_file, topology_file)
    delta = _certain_loop(pSpill, curr)

    _assert_move(delta)

    assert np.all(delta[:, 0] == delta[0, 0])  # lat move matches for all LEs
    assert np.all(delta[:, 1] == delta[0, 1])  # long move matches for all LEs
    assert np.all(delta[:, 2] == 0)  # 'z' is zeros

    return delta
def test_serialize_deserialize():
    """
    test to_dict function for Grid Current object
    create a new grid_current object and make sure it has same properties
    """

    c_grid = GridCurrentMover(curr_file, topology_file)
    serial = c_grid.serialize('webapi')
    dict_ = GridCurrentMover.deserialize(serial)
    c2 = GridCurrentMover.new_from_dict(dict_)
    assert c_grid == c2

    c_grid.update_from_dict(dict_)  # tests no failures
Exemple #17
0
def make_modelF(timeStep, start_time, duration, weatheringSteps, map, uncertain, data_path, curr_path, wind_path, map_path, reFloatHalfLife, windFile, currFile, num_elements, depths, lat, lon, output_path, wind_scale, save_nc, timestep_outputs, weatherers, td, dif_coef,temp_water):
    print 'initializing the model:'
    model = Model(time_step=timeStep, start_time=start_time, duration=duration, uncertain=uncertain)
    print 'adding the map:'
    mapfile = get_datafile(os.path.join(data_path, map_path, map))
    model.map = MapFromBNA(mapfile, refloat_halflife=reFloatHalfLife)
    print 'adding a renderer'

    if save_nc:
        scripting.remove_netcdf(output_path+'/'+'output.nc')
        nc_outputter = NetCDFOutput(output_path+'/'+'output.nc', which_data='standard', output_timestep=timedelta(hours=timestep_outputs))
        model.outputters += nc_outputter

    print 'adding a wind mover:'
    wind_file = get_datafile(os.path.join(data_path, wind_path, windFile))
    wind = GridWindMover(wind_file)
    # wind.wind_scale = wind_scale
    model.movers += wind
    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(data_path, curr_path, currFile))
    model.movers += GridCurrentMover(curr_file, num_method='RK4')
    if td:
        random_mover = RandomMover(diffusion_coef=dif_coef)
        model.movers += random_mover
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=num_elements, start_position=(lon, lat, 0), release_time=start_time, end_release_time=start_time + duration)#, substance='AD04001', amount=9600000, units='kg')

    if weatherers:
        print 'adding weatherers'
        water = Water(temp_water)
        wind = constant_wind(0.0001, 0, 'knots')
        waves = Waves(wind, water)
        model.weatherers += Evaporation(water, wind)
    # model.weatherers += Emulsification(waves)
        model.weatherers += NaturalDispersion(waves, water)
    return model
Exemple #18
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # set up the modeling environment
    start_time = datetime(2016, 9, 23, 0, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=2),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()  # this is a "water world -- no land anywhere"

    # renderere is only top-down view on 2d -- but it's something
    renderer = Renderer(
        output_dir=images_dir,
        size=(1024, 768),
        output_timestep=timedelta(hours=1),
    )
    renderer.viewport = ((196.14, 71.89), (196.18, 71.93))

    print 'adding outputters'
    model.outputters += renderer

    # Also going to write the results out to a netcdf file
    netcdf_file = os.path.join(base_dir, 'script_arctic_plume.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(
        netcdf_file,
        which_data='most',
        # output most of the data associated with the elements
        output_timestep=timedelta(hours=2))

    print "adding Horizontal and Vertical diffusion"

    # Horizontal Diffusion
    model.movers += RandomMover(diffusion_coef=500)
    # vertical diffusion (different above and below the mixed layer)
    model.movers += RandomVerticalMover(vertical_diffusion_coef_above_ml=5,
                                        vertical_diffusion_coef_below_ml=.11,
                                        mixed_layer_depth=10)

    print 'adding Rise Velocity'
    # droplets rise as a function of their density and radius
    model.movers += TamocRiseVelocityMover()

    print 'adding a circular current and eastward current'
    fn = 'hycom_glb_regp17_2016092300_subset.nc'
    fn_ice = 'hycom-cice_ARCu0.08_046_2016092300_subset.nc'
    import pysgrid
    import netCDF4 as nc
    df = nc.Dataset(fn)
    lon = df['lon'][:]
    lat = df['lat'][:]
    grd = pysgrid.SGrid(node_lon=np.repeat(lon.reshape(1, -1),
                                           len(lat),
                                           axis=0),
                        node_lat=np.repeat(lat.reshape(-1, 1),
                                           len(lon),
                                           axis=1))
    print(grd.node_lon.shape)
    print(grd.node_lat.shape)
    gc = GridCurrent.from_netCDF(fn, units='m/s', grid=grd)

    model.movers += IceMover(fn_ice)
    model.movers += GridCurrentMover(fn)
    model.movers += SimpleMover(velocity=(0., 0., 0.))
    model.movers += constant_wind_mover(20, 315, units='knots')

    # Now to add in the TAMOC "spill"
    print "Adding TAMOC spill"

    model.spills += tamoc_spill.TamocSpill(
        release_time=start_time,
        start_position=(196.16, 71.91, 40.0),
        num_elements=1000,
        end_release_time=start_time + timedelta(days=1),
        name='TAMOC plume',
        TAMOC_interval=None,  # how often to re-run TAMOC
    )

    model.spills[0].data_sources['currents'] = gc

    return model
Exemple #19
0
    def make_model(images_dir=os.path.join(base_dir, 'images')):
        print('initializing the model')

        #print (start_date)

        start_time = new_start_date

        model = Model(
            start_time=start_time,
            duration=timedelta(days=30),
            #weathering_substeps = 6,
            time_step=24 * 3600,
            uncertain=True)

        mapfile = get_datafile(os.path.join(base_dir, 'gulf.bna'))

        #mapfile='gulf.bna'

        print('adding the map')
        model.map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

        #
        # Add the outputters -- render to images, and save out as netCDF
        #

        print('adding renderer')
        #model.outputters += Renderer(mapfile,
        # images_dir,
        #size=(800, 600),
        #draw_back_to_fore=True)

        #print ("adding netcdf output")
        #   netcdf_output_file = os.path.join(base_dir,'gulf_output.nc')
        #scripting.remove_netcdf(netcdf_output_file)
        #    model.outputters += NetCDFOutput(netcdf_output_file, which_data='all',
        #                                    output_timestep=timedelta(hours=24))

        print("adding shapefile output")

        # with open("Result {}".format(spill_num), "w") as fp:
        # fp.write("text")

        dir_name = os.path.join(base_dir,
                                "Result{}_{}".format(spill_num, position))
        if not os.path.exists(dir_name):
            os.mkdir(dir_name)

        for i in range(1, 31, 1):
            model.outputters += ShapeOutput(os.path.join(
                dir_name,
                'gnome_result{id}_{spillnum}'.format(id=i,
                                                     spillnum=spill_num)),
                                            zip_output=False,
                                            output_timestep=timedelta(days=i))

        #
        # Set up the movers:
        #

        print('adding a RandomMover:')
        model.movers += RandomMover(diffusion_coef=10000)

        print('adding a simple wind mover:')
        #    model.movers += constant_wind_mover(5, 315, units='m/s')

        wind_file = get_datafile(os.path.join(base_dir, 'nc3ECMWF2016.nc'))
        model.movers += GridWindMover(wind_file)

        #water = Water (temperature=290.367946, salinity=35.0)
        #wind = GridWindMover (wind_file)
        #waves = Waves ()

        print('adding a current mover:')

        # # this is NEMO currents

        curr_file = get_datafile(os.path.join(base_dir, 'current2016nc3.nc'))
        model.movers += GridCurrentMover(curr_file, num_method='Euler')

        # #
        # # Add some spills (sources of elements)
        # #

        print('adding one spill')

        spill = point_line_release_spill(num_elements=1000,
                                         amount=4000 * spilldur,
                                         units='m^3',
                                         start_position=position,
                                         release_time=start_time,
                                         substance=(u'BAHRGANSAR, OIL & GAS'))
        model.spills += spill

        ####### open excel file
        print('adding Excel file')
        #name = 'Result{}_{}'.format(spill_num, position)
        workbook = xlsxwriter.Workbook(
            os.path.join(dir_name,
                         'Result{}_{}.xlsx'.format(spill_num, position)))
        worksheet = workbook.add_worksheet()
        worksheet.write('A1', spilldur * 3200)

        #workbook.close()

        print('adding weatherers and cleanup options:')

        model.environment += [water, wind, waves]
        model.add_weathering()

        #model.weatherers += Evaporation()
        #model.weatherers += Emulsification()
        #model.weatherers += NaturalDispersion()
        model.full_run()
        return model
Exemple #20
0
        #             break
        # w_file_list.append( next_fn )    # pad the list with next file to cover special case of last file.
        #                                 #   awkward. fix later
        # print 'number of wind files :: ', len(w_file_list)

        # for i in range(0, 1000 ):
        #     curr_t, curr_fn = setup.Time_Map[i]
        #     file_list.append( curr_fn )

        # set up model for this start_time/duration, adding required forcing files
        model = make_model(setup.RootDir)
        model.duration = run_time
        # model.movers.clear()

        print 'adding a GridCurrentMover:'
        c_mover = GridCurrentMover(filename=setup.c_filelist,
                                   topology_file=setup.c_Topology)
        model.movers += c_mover

        print 'adding a GridWindMover:'
        w_mover = GridWindMover(wind_file=setup.w_filelist,
                                topology_file=setup.w_Topology)
        # w_mover = GridWindMover(wind_file=setup.w_filelist)
        model.movers += w_mover

        print 'adding a RandomMover:'
        random_mover = RandomMover(diffusion_coef=10000)  #in cm/s
        model.movers += random_mover

        # # print 'creating MFDataset'
        # ds = nc4.MFDataset(file_list)
Exemple #21
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # start_time = datetime(1985, 7, 1, 13, 30)
    start_time = datetime(1985, 1, 2, 0, 0)

    # model time-step in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours=3 * 24 + 23),
                  time_step=15 * 60,
                  uncertain=False)

    print 'adding the map'
    mapfile = get_datafile(os.path.join(base_dir, 'coast_SBbig.bna'))
    model.map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    print 'adding outputters'
    renderer = Renderer(mapfile, images_dir, size=(800, 600))
    renderer.viewport = ((-122, 33), (-117, 35))
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_SB')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(netcdf_file, which_data='all')

    print 'adding a spill'
    end_time = start_time + timedelta(hours=24)
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(202.294666, 71.922333,
                                                     0.0),
                                     release_time=start_time,
                                     end_release_time=end_time)
    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a current mover:'
    # currents from ROMS Santa Barbara run, provided by UCLA
    curr_file = os.path.join(base_dir, 'BOEM', 'Currentfilelist.txt')
    print curr_file
    topology_file = os.path.join(base_dir, 'TopologyCurrent.DAT')
    model.movers += GridCurrentMover(curr_file, topology_file)
    # model.movers += GridCurrentMover(curr_file)

    print 'adding a wind mover:'
    # winds from the ROMS Arctic run, provided by Walter Johnson
    wind_file = os.path.join(base_dir, 'BOEM', 'Windfilelist.txt')
    print wind_file
    topology_file = os.path.join(base_dir, 'TopologyCurrent.DAT')
    model.movers += GridWindMover(wind_file, topology_file)
    # model.movers += GridWindMover(wind_file, topology_file)

    #  print 'adding an ice mover:'
    #  ice from the ROMS Arctic run, provided by Walter Johnson
    #  ice_file = os.path.join(base_dir, 'data_gnome', 'ROMS_h2ouv', 'arctic_filelist.txt')
    #  topology_file = os.path.join(base_dir, 'data_gnome', 'arctic_subset_newtopo2.DAT')
    #  model.movers += IceMover(ice_file, topology_file)
    #  model.movers += IceMover(ice_file)
    #  print ice_file

    return model
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # data starts at 1:00 instead of 0:00
    start_time = datetime(2013, 1, 1, 1)

    model = Model(start_time=start_time,
                  duration=timedelta(days=1),
                  time_step=900,
                  uncertain=False)

    try:
        mapfile = get_datafile(os.path.join(base_dir, 'pearl_harbor.bna'))
    except HTTPError:
        print(
            'Could not download Pearl Harbor data from server - '
            'returning empty model')
        return model

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=1)  # hours

    #
    # Add the outputters -- render to images, and save out as netCDF
    #

    print 'adding renderer and netcdf output'
    model.outputters += Renderer(mapfile, images_dir, size=(800, 600))

    netcdf_output_file = os.path.join(base_dir, 'pearl_harbor_output.nc')
    scripting.remove_netcdf(netcdf_output_file)
    model.outputters += NetCDFOutput(netcdf_output_file, which_data='all')

    # #
    # # Set up the movers:
    # #
    print 'adding a random mover:'
    model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a wind mover:'
    series = np.zeros((3, ), dtype=datetime_value_2d)
    series[0] = (start_time, (4, 180))
    series[1] = (start_time + timedelta(hours=12), (2, 270))
    series[2] = (start_time + timedelta(hours=24), (4, 180))

    w_mover = WindMover(Wind(timeseries=series, units='knots'))
    model.movers += w_mover
    model.environment += w_mover.wind

    print 'adding a current mover:'
    # this is CH3D currents
    curr_file = os.path.join(base_dir, 'ch3d2013.nc')
    topology_file = os.path.join(base_dir, 'PearlHarborTop.dat')
    model.movers += GridCurrentMover(curr_file, topology_file)

    # #
    # # Add a spill (sources of elements)
    # #
    print 'adding spill'
    model.spills += point_line_release_spill(num_elements=1000,
                                             start_position=(-157.97064,
                                                             21.331524, 0.0),
                                             release_time=start_time)
    return model
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2004, 12, 31, 13, 0)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=1),
                  time_step=30 * 60,
                  uncertain=True)

    mapfile = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=1)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, size=(800, 600),
                        output_timestep=timedelta(hours=2),
                        draw_ontop='uncertain')
    renderer.viewport = ((-76.5, 37.), (-75.8, 38.))

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_chesapeake_bay.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file, which_data='all',
                                     output_timestep=timedelta(hours=2))

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-76.126872,
                                                     37.680952,
                                                     0.0),
                                     release_time=start_time)

    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (30, 0))
    series[1] = (start_time + timedelta(hours=23), (30, 0))

    wind = Wind(timeseries=series, units='knot')

    # default is .4 radians
    w_mover = WindMover(wind, uncertain_angle_scale=0)
    model.movers += w_mover

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.nc'))
    topology_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.dat'))

    # uncertain_time_delay in hours
    c_mover = GridCurrentMover(curr_file, topology_file,
                               uncertain_time_delay=3)
    c_mover.uncertain_along = 0  # default is .5
    # c_mover.uncertain_cross = 0  # default is .25

    model.movers += c_mover

    return model
    _json_, zipfile_, _refs = obj.save(saveloc_, )
    obj2 = obj.__class__.load(zipfile_)

    assert obj == obj2


# Following movers fail on windows with fixture. This is causing an issue in
# windows for the NetCDF files - for some reason it is not able to delete the
# netcdf data files. All files are being closed in C++.
l_movers2 = (
    CurrentCycleMover(testdata['CurrentCycleMover']['curr'],
                      topology_file=testdata['CurrentCycleMover']['top'],
                      tide=Tide(testdata['CurrentCycleMover']['tide'])),
    CurrentCycleMover(testdata['CurrentCycleMover']['curr'],
                      topology_file=testdata['CurrentCycleMover']['top']),
    GridCurrentMover(testdata['GridCurrentMover']['curr_tri'],
                     testdata['GridCurrentMover']['top_tri']),
    GridWindMover(testdata['GridWindMover']['wind_curv'],
                  testdata['GridWindMover']['top_curv']),
)


@pytest.mark.parametrize("obj", l_movers2)
def test_serialize_deserialize_grids(saveloc_, obj):
    'test serialize/deserialize functionality'
    json_ = obj.serialize()
    obj2 = obj.__class__.deserialize(json_)

    assert obj == obj2


@pytest.mark.parametrize("obj", l_movers2)
Exemple #25
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2004, 12, 31, 13, 0)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(days=1),
                  time_step=30 * 60,
                  uncertain=True)

    mapfile = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=1)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile,
                        images_dir,
                        image_size=(800, 600),
                        output_timestep=timedelta(hours=2),
                        draw_ontop='forecast')
    # set the viewport to zoom in on the map:
    renderer.viewport = ((-76.5, 37.), (-75.8, 38.))
    # add the raster map, so we can see it...
    # note: this is really slow, so only use for diagnostics
    # renderer.raster_map = model.map

    print 'adding outputters'
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'script_chesapeake_bay.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='all',
                                     output_timestep=timedelta(hours=2))

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill = point_line_release_spill(num_elements=1000,
                                     start_position=(-76.126872, 37.680952,
                                                     0.0),
                                     release_time=start_time)

    model.spills += spill

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=50000)

    print 'adding a wind mover:'

    series = np.zeros((2, ), dtype=datetime_value_2d)
    series[0] = (start_time, (30, 0))
    series[1] = (start_time + timedelta(hours=23), (30, 0))

    wind = Wind(timeseries=series, units='knot')

    # default is .4 radians
    w_mover = WindMover(wind, uncertain_angle_scale=0)
    wind.extrapolation_is_allowed = True
    model.movers += w_mover

    print 'adding a current mover:'
    curr_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.nc'))
    topology_file = get_datafile(os.path.join(base_dir, 'ChesapeakeBay.dat'))

    # uncertain_time_delay in hours
    c_mover = GridCurrentMover(curr_file,
                               topology_file,
                               uncertain_time_delay=3)
    c_mover.uncertain_along = 0  # default is .5
    # c_mover.uncertain_cross = 0  # default is .25

    model.movers += c_mover

    return model
def make_model(images_dir=os.path.join(base_dir, 'images')):

    print('get contiguous')

    kml_file = os.path.join(base_dir, 'contigua.kml')
    with open(kml_file) as f:
        contiguous = parser.parse(f).getroot().Document

    coordinates = contiguous.Placemark.LineString.coordinates.text.split(' ')
    cont_coord = []
    for x in coordinates:
        x = x.split(',')
        if len(x) > 1 and float(x[1]) > -12 and float(x[1]) < -3:
            cont_coord.append([float(x[0]), float(x[1])])

    print('initializing the model')

    start_time = datetime(2022, 1, 22, 12, 0)
    mapfile = get_datafile(os.path.join(base_dir, './brazil-coast.BNA'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    duration = timedelta(days=1)
    timestep = timedelta(minutes=5)
    end_time = start_time + duration

    steps = duration.total_seconds() / timestep.total_seconds()

    print("Total step: %.4i " % (steps))

    # one hour timestep
    model = Model(start_time=start_time,
                  duration=duration,
                  time_step=timestep,
                  map=gnome_map,
                  uncertain=False,
                  cache_enabled=False)

    oil_name = 'GENERIC MEDIUM CRUDE'

    wd = UniformDistribution(low=.0002, high=.0002)

    subs = GnomeOil(oil_name, initializers=plume_initializers(distribution=wd))

    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-35.153, -8.999, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')
    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-35.176, -9.135, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')
    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-35.062, -9.112, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')
    #model.spills += point_line_release_spill(release_time=start_time, start_position=(-34.994, -9.248, 0.0), num_elements=1000, end_release_time=end_time, substance= subs, units='kg')

    for idx in range(0, len(cont_coord)):
        model.spills += point_line_release_spill(
            num_elements=500,
            start_position=(cont_coord[idx][0], cont_coord[idx][1], 0.0),
            release_time=start_time,
            end_release_time=start_time + timedelta(days=1),
            amount=500,
            substance=subs,
            units='kg')

    #shp_file = os.path.join(base_dir, 'surface_concentration')
    #scripting.remove_netcdf(shp_file + ".zip")
    #model.outputters += ShapeOutput(shp_file,
    #                                zip_output=False,
    #                                surface_conc="kde",
    #                                )

    print('adding movers:')

    print('adding a RandomMover:')
    model.movers += RandomMover(diffusion_coef=10000)

    print('adding a current mover:')

    # # this is HYCOM currents
    curr_file = get_datafile(os.path.join(base_dir, 'currents.nc'))
    model.movers += GridCurrentMover(curr_file, num_method='Euler')

    print('adding a grid wind mover:')
    wind_file = get_datafile(os.path.join(base_dir, 'wind.nc'))
    #topology_file = get_datafile(os.path.join(base_dir, 'WindSpeedDirSubsetTop.dat'))
    #w_mover = GridWindMover(wind_file, topology_file)
    w_mover = GridWindMover(wind_file)
    w_mover.uncertain_speed_scale = 1
    w_mover.uncertain_angle_scale = 0.2  # default is .4
    w_mover.wind_scale = 2

    model.movers += w_mover

    print('adding outputters')

    renderer = Renderer(mapfile,
                        images_dir,
                        image_size=(900, 600),
                        output_timestep=timestep,
                        draw_ontop='forecast')
    #set the viewport to zoom in on the map:
    #renderer.viewport = ((-37, -11), (-34, -8)) #alagoas
    renderer.viewport = ((-36, -10), (-30, 5))
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'contigua.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='standard',
                                     surface_conc='kde')

    return model
    def make_model():
        print ('initializing the model')

        #print (start_date)

        start_time = startday

        model = Model(start_time=start_time, duration=timedelta(days=30), 
                      #weathering_substeps = 6,
                      time_step=24 * 3600,
                      uncertain=False)

        mapfile = get_datafile(os.path.join(base_dir,'gulf.bna'))

        #mapfile='gulf.bna'

        print ('adding the map')
        model.map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

        #
        # Add the outputters -- render to images, and save out as netCDF
        #

        

        

        print ("adding shapefile output")

         # with open("Result {}".format(spill_num), "w") as fp:
         # fp.write("text")
        
        dir_name = os.path.join (base_dir, season, str(position), "Spillnum {}".format(spill_num))
        
        if not os.path.exists(dir_name):
            os.makedirs(dir_name)
        
        #os.makedirs(dir_name, exist_ok =True)

        for i in range(1, 31, 1):
            model.outputters += ShapeOutput(os.path.join(dir_name, 'gnome_result {id}'.format(id=i)),
                                        zip_output=False,
                                        output_timestep=timedelta(days=i)) 
        images_dir = os.path.join(dir_name, 'image')
        # print 'adding renderer'
        # model.outputters += Renderer(mapfile,
        #                         images_dir,
        #                         image_size=(800, 600))
                                 
        # print ('adding renderer')
        # dir_image = os.path.join(dir_name)
        # model.outputters += Renderer(mapfile,
        #                            dir_image,
        #                             size=(800, 600))
                              

        #
        # Set up the movers:
        #

        print ('adding a RandomMover:')
        model.movers += RandomMover(diffusion_coef=10000)

        print ('adding a simple wind mover:')
    

        
        wind_file = get_datafile(os.path.join(base_dir, 'ECMWF.nc'))
        model.movers += GridWindMover(wind_file)

                                                  

        print ('adding a current mover:')

        # # this is NEMO currents

        curr_file = get_datafile(os.path.join(base_dir, Currents))
        model.movers += GridCurrentMover(curr_file,
                                         num_method='Euler');


        
        # # Add some spills (sources of elements)
        

        print ('adding one spill')

        
       
        spill = point_line_release_spill(num_elements=1000,
                                                 amount=  3200000000 * spilldur , units='grams',
                                                 start_position = position,
                                                 release_time = start_time,
                                                 substance = (sub))
        model.spills += spill

        ####### open excel file 
        print ('adding Excel file')
      
        workbook = xlsxwriter.Workbook(os.path.join(dir_name, 'Result {}_{}.xlsx'.format(spill_num, position)))
        worksheet = workbook.add_worksheet () 
        a = ((spilldur*3200)**(-0.3))*0.000069
        worksheet.write ('A1', a)
        workbook.close()

        
        print ('adding weatherers and cleanup options:')

        model.environment += [water,wind,waves]
        model.weatherers += Evaporation()
        model.weatherers += Emulsification()
        model.weatherers += NaturalDispersion()
        print ('model full run:')
        model.full_run()
        return model
Exemple #28
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    # set up the modeling environment
    start_time = datetime(2016, 9, 18, 1, 0)
    model = Model(start_time=start_time,
                  duration=timedelta(days=3),
                  time_step=30 * 60,
                  uncertain=False)

    print 'adding the map'
    model.map = GnomeMap()  # this is a "water world -- no land anywhere"

    # renderere is only top-down view on 2d -- but it's something
    renderer = Renderer(
        output_dir=images_dir,
        size=(1024, 768),
        output_timestep=timedelta(hours=1),
    )
    renderer.viewport = ((-87.095, 27.595), (-87.905, 28.405))

    print 'adding outputters'
    model.outputters += renderer

    # Also going to write the results out to a netcdf file
    netcdf_file = os.path.join(base_dir, 'gulf_tamoc.nc')
    scripting.remove_netcdf(netcdf_file)

    model.outputters += NetCDFOutput(
        netcdf_file,
        which_data='most',
        # output most of the data associated with the elements
        output_timestep=timedelta(hours=2))

    print "adding Horizontal and Vertical diffusion"

    # Horizontal Diffusion
    model.movers += RandomMover(diffusion_coef=100000)
    # vertical diffusion (different above and below the mixed layer)
    model.movers += RandomVerticalMover(
        vertical_diffusion_coef_above_ml=50,
        vertical_diffusion_coef_below_ml=10,
        horizontal_diffusion_coef_above_ml=100000,
        horizontal_diffusion_coef_below_ml=100,
        mixed_layer_depth=10)

    print 'adding Rise Velocity'
    # droplets rise as a function of their density and radius
    model.movers += TamocRiseVelocityMover()

    print 'adding the 3D current mover'
    gc = GridCurrent.from_netCDF('HYCOM_3d.nc')

    model.movers += GridCurrentMover('HYCOM_3d.nc')
    #    model.movers += SimpleMover(velocity=(0., 0, 0.))
    #    model.movers += constant_wind_mover(5, 315, units='knots')

    # Wind from a buoy
    w = Wind(filename='KIKT.osm')
    model.movers += WindMover(w)

    # Now to add in the TAMOC "spill"
    print "Adding TAMOC spill"

    model.spills += tamoc_spill.TamocSpill(
        release_time=start_time,
        start_position=(-87.5, 28.0, 2000),
        num_elements=30000,
        end_release_time=start_time + timedelta(days=2),
        name='TAMOC plume',
        TAMOC_interval=None,  # how often to re-run TAMOC
    )

    model.spills[0].data_sources['currents'] = gc

    return model
Exemple #29
0
        # model.movers += c_mover

        # print 'creating wind MFDataset'
        # ds_w = nc4.MFDataset(file_list_w)

        # print 'adding a WindMover (Euler):'
        # g_wind = GridWind.from_netCDF(filename=file_list_w,
        #                             dataset=ds_w,
        #                             grid_topology={'node_lon':'lonc','node_lat':'latc'})
        # w_mover = PyWindMover(wind = g_wind, default_num_method='Euler')
        # model.movers += w_mover

        print 'adding a CurrentMover (Trapeziod/RK4):'
        c_mover = GridCurrentMover(os.path.join(setup.Data_Dir,
                                                setup.CurrCatFile),
                                   os.path.join(setup.Data_Dir,
                                                setup.CurrTopoFile),
                                   num_method='RK4')
        model.movers += c_mover

        print 'adding a WindMover (Euler):'
        w_mover = GridWindMover(
            os.path.join(setup.Data_DirW, setup.WindCatFile),
            os.path.join(setup.Data_DirW, setup.WindTopoFile))
        model.movers += w_mover

        print 'adding a RandomMover:'
        model.movers += RandomMover(diffusion_coef=50000)

        # for pos_idx, start_position in enumerate(start_positions):
        for pos_idx in setup.RunSites:
    """

    delta = test_loop()
    u_delta = test_uncertain_loop()
    print
    print delta
    print u_delta
    assert np.all(delta[:, :2] != u_delta[:, :2])
    assert np.all(delta[:, 2] == u_delta[:, 2])
    uncertain_time_delay = 3
    u_delta = test_uncertain_loop(uncertain_time_delay)
    print u_delta
    assert np.all(delta[:, :2] == u_delta[:, :2])


c_grid = GridCurrentMover(curr_file, topology_file)


def test_default_props():
    """
    test default properties
    """

    assert c_grid.current_scale == 1
    assert c_grid.uncertain_time_delay == 0
    assert c_grid.uncertain_duration == 24
    assert c_grid.uncertain_cross == .25
    assert c_grid.uncertain_along == .5
    assert c_grid.extrapolate is False
    assert c_grid.time_offset == 0
Exemple #31
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2013, 5, 18, 0)

    model = Model(start_time=start_time,
                  duration=timedelta(days=8),
                  time_step=4 * 3600,
                  uncertain=False)

    mapfile = get_datafile(os.path.join(base_dir, 'mariana_island.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    #
    # Add the outputters -- render to images, and save out as netCDF
    #

    print 'adding renderer'
    model.outputters += Renderer(
        mapfile,
        images_dir,
        size=(800, 600),
    )
    #                                 draw_back_to_fore=True)

    # print "adding netcdf output"
    # netcdf_output_file = os.path.join(base_dir,'mariana_output.nc')
    # scripting.remove_netcdf(netcdf_output_file)
    # model.outputters += NetCDFOutput(netcdf_output_file, which_data='all')

    #
    # Set up the movers:
    #

    print 'adding a RandomMover:'
    model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a simple wind mover:'
    model.movers += constant_wind_mover(5, 315, units='m/s')

    print 'adding a current mover:'

    # # this is HYCOM currents
    curr_file = get_datafile(os.path.join(base_dir, 'HYCOM.nc'))
    model.movers += GridCurrentMover(curr_file,
                                     num_method=numerical_methods.euler)

    # #
    # # Add some spills (sources of elements)
    # #

    print 'adding four spill'
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(145.25, 15.0,
                                                             0.0),
                                             release_time=start_time)
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(146.25, 15.0,
                                                             0.0),
                                             release_time=start_time)
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(145.75, 15.25,
                                                             0.0),
                                             release_time=start_time)
    model.spills += point_line_release_spill(num_elements=NUM_ELEMENTS // 4,
                                             start_position=(145.75, 14.75,
                                                             0.0),
                                             release_time=start_time)

    return model
Exemple #32
0
def make_model(images_dir=os.path.join(base_dir, 'images2')):
    print('initializing the model')

    start_time = datetime(int(sys.argv[1]), int(sys.argv[2]), int(sys.argv[3]),
                          int(sys.argv[4]), int(sys.argv[5]))
    mapfile = get_datafile(os.path.join(base_dir, './brazil-coast.bna'))

    gnome_map = MapFromBNA(mapfile, refloat_halflife=6)  # hours

    # # the image output renderer
    # global renderer
    #duration = timedelta(minutes=5)
    #timestep = timedelta(minutes=5)
    duration = timedelta(minutes=5)
    timestep = timedelta(minutes=5)
    endtime = start_time + duration

    steps = duration.total_seconds() / timestep.total_seconds()

    print("Total step: %.4i " % (steps))

    model = Model(start_time=start_time,
                  duration=duration,
                  time_step=timestep,
                  map=gnome_map,
                  uncertain=False,
                  cache_enabled=False)

    oil_name = 'GENERIC MEDIUM CRUDE'

    wd = UniformDistribution(low=.0002, high=.0002)

    subs = GnomeOil(oil_name, initializers=plume_initializers(distribution=wd))

    #print 'adding a spill'
    #spill = point_line_release_spill(num_elements=122,
    #                                 start_position=(-35.14,
    #                                                 -9.40, 0.0),
    #                                 release_time=start_time)
    #model.spills += spill

    #spill2 = spatial_release_spill(-35.14,-9.40, 0.0, start_time)
    #model.spills += spill2

    #print 'load nc'
    #netcdf_file = os.path.join(base_dir, 'maceio.nc')
    #relnc = InitElemsFromFile(netcdf_file,release_time=start_time)
    #relnc = InitElemsFromFile(netcdf_file,index=5)
    #spillnc = Spill(release=relnc)
    #print spillnc.release.num_elements
    #print spillnc.release.name
    #print spillnc.substance
    #print relnc._init_data['age']
    #print relnc.release_time

    #model.spills += spillnc

    #model._load_spill_data()

    #for sc in model.spills.items():
    #    sc.prepare_for_model_run()

    #print(relnc.num_elements)
    #print(relnc.num_released)

    # add particles - it works
    print('adding particles')
    # Persistent oil spill in contiguous zone border
    if int(sys.argv[6]) == 1:
        release = release_from_splot_data(start_time, 'contiguous.txt')
        print("Adding new particles")
        model.spills += Spill(release=release, substance=subs)

    # Particles from previows simulation step
    try:
        f = open('step.txt')
        f.close()
        release2 = release_from_splot_data(start_time, 'step.txt')
        model.spills += Spill(release=release2, substance=subs)
    except IOError:
        print('No previous step, using only contiguous.txt')

    #assert rel.num_elements == exp_num_elems
    #assert len(rel.start_position) == exp_num_elems
    #cumsum = np.cumsum(exp)
    #for ix in xrange(len(cumsum) - 1):
    #    assert np.all(rel.start_position[cumsum[ix]] ==
    #                  rel.start_position[cumsum[ix]:cumsum[ix + 1]])
    #assert np.all(rel.start_position[0] == rel.start_position[:cumsum[0]])

    #spnc = Spill(release=None)
    #spnc.release = relnc

    print('adding a RandomMover:')
    #model.movers += RandomMover(diffusion_coef=10000, uncertain_factor=2)
    model.movers += RandomMover(diffusion_coef=10000)

    print('adding a current mover:')

    # # this is HYCOM currents
    curr_file = get_datafile(os.path.join(base_dir, 'corrente15a28de09.nc'))
    model.movers += GridCurrentMover(curr_file, num_method='Euler')

    print('adding a grid wind mover:')
    wind_file = get_datafile(os.path.join(base_dir, 'vento15a28de09.nc'))
    #topology_file = get_datafile(os.path.join(base_dir, 'WindSpeedDirSubsetTop.dat'))
    #w_mover = GridWindMover(wind_file, topology_file)
    w_mover = GridWindMover(wind_file)
    w_mover.uncertain_speed_scale = 1
    w_mover.uncertain_angle_scale = 0.2  # default is .4
    w_mover.wind_scale = 2

    model.movers += w_mover

    print('adding outputters')

    renderer = Renderer(mapfile,
                        images_dir,
                        image_size=(900, 600),
                        output_timestep=timestep,
                        draw_ontop='forecast')
    #set the viewport to zoom in on the map:
    #renderer.viewport = ((-37, -11), (-34, -8)) #alagoas
    renderer.viewport = ((-55, -34), (-30, 5))  #1/4 N alagoas
    model.outputters += renderer

    netcdf_file = os.path.join(base_dir, 'step.nc')
    scripting.remove_netcdf(netcdf_file)
    model.outputters += NetCDFOutput(netcdf_file,
                                     which_data='standard',
                                     surface_conc='kde')

    return model