def test_path_gen():
    '''
    test only path generation in Sim.
    '''
    # imu_err
    imu_err = {'gyro_b': np.array([1e-2, 2e-2, 3e-2]) / D2R * 3600 * 0,
               'gyro_arw': np.array([1e-5, 1e-5, 1e-5]) / D2R * 60 * 0,
               'gyro_b_stability': np.array([1e-5, 1e-5, 1e-5]) / D2R * 3600 * 1e-0,
                  'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
               'accel_b': np.array([2.0e-3, 1.0e-3, 5.0e-3]) * 0,
               'accel_vrw': np.array([1e-4, 1e-4, 1e-4]) * 60.0 * 0,
               'accel_b_stability': np.array([1e-4, 1e-4, 1e-4]) * 1.0 * 1e0,
                  'accel_b_corr': np.array([200.0, 200.0, 200.0]),
               #    'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
               }
    # generate GPS and magnetometer data
    gps_err = {
        'stdp': np.array([1, 1, 1]) * 1e-6,
        'stdv': np.array([0, 0, 0]),
    }
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=True, gps_opt=gps_err)

    # start simulation
    sim = ins_sim.Sim([fs, fs_gps, fs_mag],
                      motion_def_path+"//imu_def7.csv",
                      ref_frame=0,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=None)
    sim.run(1)
    # save simulation data to files
    sim.results('/imu/data7')
Exemple #2
0
def test_dmu380_sim():
    '''
    test Sim with DMU380 algorithm.
    '''
    print("This demo only runs on Ubuntu x64.")
    #### choose a built-in IMU model, typical for IMU380
    imu_err = 'mid-accuracy'
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=False)

    #### Algorithm
    # DMU380 algorithm
    from demo_algorithms import dmu380_sim
    cfg_file = os.path.abspath(
        './/demo_algorithms//dmu380_sim_lib//ekfSim_tilt.cfg')
    algo = dmu380_sim.DMU380Sim(cfg_file)

    #### start simulation
    sim = imu_sim.Sim([fs, 0.0, fs],
                      imu,
                      motion_def_path + "//motion_def-Komatsu_loaded_-5_0.csv",
                      ref_frame=1,
                      mode=None,
                      env=None,
                      algorithm=algo)
    sim.run(10)
    # generate simulation results, summary, and save data to files
    sim.results()  # do not save data
    # plot data
    sim.plot(['att_euler'])
Exemple #3
0
def test_path_gen():
    '''
    test only path generation in Sim.
    '''
    #### imu_err
    imu_err = {'gyro_b': np.array([1e-2, 2e-2, 3e-2]) / D2R * 3600 * 0,
               'gyro_arw': np.array([1e-5, 1e-5, 1e-5]) / D2R * 60,
               'gyro_b_stability': np.array([5e-6, 5e-6, 5e-6]) / D2R * 3600,
               'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
               'accel_b': np.array([2.0e-3, 1.0e-3, 5.0e-3]) * 0,
               'accel_vrw': np.array([1e-4, 1e-4, 1e-4]) * 60.0,
               'accel_b_stability': np.array([1e-5, 1e-5, 1e-5]) * 1.0,
               'accel_b_corr': np.array([200.0, 200.0, 200.0]),
            #    'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
              }
    # generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=True)

    #### start simulation
    sim = ins_sim.Sim([fs, fs_gps, fs_mag],
                      motion_def_path+"//imu_def6.csv",
                      ref_frame=1,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=None)
    sim.run(1)
    # save simulation data to files
    sim.results('/home/zsp/Desktop/imu/data5')
    # plot data, 3d plot of reference positoin, 2d plots of gyro and accel
    # sim.plot(['gyro', 'accel'])
    sim.plot(['ref_pos', 'gyro', 'gps_visibility'], opt={'ref_pos': '3d'})
Exemple #4
0
def test_path_gen():
    '''
    test only path generation in Sim.
    '''
    #### choose a built-in IMU model, typical for IMU381
    imu_err = 'mid-accuracy'
    # generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True)

    #### Algorithm
    # ECF based inclinometer
    from demo_algorithms import inclinometer_mahony
    algo1 = inclinometer_mahony.MahonyFilter()
    from demo_algorithms import inclinometer_acc
    algo2 = inclinometer_acc.TiltAcc()

    #### start simulation
    sim = ins_sim.Sim(
        [fs, fs_gps, fs_mag],
        motion_def_path + "//motion_def-static.csv",
        #   'e://Projects//gnss-ins-sim//demo_saved_data//2018-04-24-14-55-53//',
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,
        algorithm=[algo1, algo2])
    sim.run(3)
    # save simulation data to files
    sim.results('.//demo_saved_data//')
    # plot data, 3d plot of reference positoin, 2d plots of gyro and accel
    sim.plot(['att_euler'], opt={'att_euler': 'error'})
def test_inclinometer_mahony():
    '''
    test Sim with a inclinometer algorithm based on Mahony's theory.
    '''
    #### choose a built-in IMU model, typical for IMU380
    imu_err = 'low-accuracy'
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=False)

    #### Algorithm
    # ECF based inclinometer
    from demo_algorithms import inclinometer_mahony
    algo = inclinometer_mahony.MahonyFilter()

    #### start simulation
    sim = imu_sim.Sim([fs, 0.0, 0.0],
                      imu,
                      motion_def_path + "//motion_def.csv",
                      ref_frame=1,
                      mode=None,
                      env=None,
                      algorithm=algo)
    sim.run()
    # generate simulation results, summary, and save data to files
    sim.results()  # do not save data
    # plot data
    sim.plot(['att_euler', 'ref_att_euler'], opt={'att_euler': 'error'})
def test_path_gen():
    '''
    test ANS as GUI.
    '''
    #### simulation config
    motion_def_path = os.path.abspath('.//demo_motion_def_files//')
    fs = 100.0          # IMU sample frequency
    fs_gps = 10.0       # GPS sample frequency
    fs_mag = fs         # magnetometer sample frequency, not used for now

    #### choose a built-in IMU model, typical for IMU381
    imu_err = 'mid-accuracy'
    # generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True)

    #### start simulation
    with open(motion_def_path+"//motion_def-3d.csv", 'r') as f:
        tmp = f.read()
    sim = ins_sim.Sim([fs, fs_gps, fs_mag],
                      tmp,
                      ref_frame=0,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=None)
    sim.run(1)
    # save simulation data to files
    sim.results('')

    #### GUI
    gui = gui_ans.GuiAns()
    gui.start(sim)
Exemple #7
0
def odometer_sim():
    #### IMU model, typical for IMU381
    imu_err = {
        'gyro_b': np.array([0.0, 0.0, 0.0]),
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    gps_err = {
        'stdp': np.array([5.0, 5.0, 7.0]) * 1.0,
        'stdv': np.array([0.05, 0.05, 0.05]) * 1.0
    }
    # generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=True, gps_opt=gps_err)

    #### Algorithm
    # Free integration based on odometer in NED frame
    from demo_algorithms import gps_odo
    '''
    Initial states (position, velocity and attitude) are from motion_def csv file.
    '''
    ini_pos_vel_att = np.genfromtxt(motion_def_path+"//motion_def-ins_odo.csv",\
                                    delimiter=',', skip_header=1, max_rows=1)
    ini_pos_vel_att[0] = ini_pos_vel_att[
        0] * D2R  #将lat (deg),lon (deg), yaw (deg), pitch (deg), roll (deg)单位转为弧度 rad
    ini_pos_vel_att[1] = ini_pos_vel_att[1] * D2R
    ini_pos_vel_att[6:9] = ini_pos_vel_att[6:9] * D2R
    # add initial states error if needed
    ini_vel_err = np.array([0.0, 0.0, 0.0
                            ])  # initial velocity error in the body frame, m/s
    ini_att_err = np.array([0.0, 0.0, 0.0])  # initial Euler angles error, deg
    ini_pos_vel_att[3:6] += ini_vel_err
    ini_pos_vel_att[6:9] += ini_att_err * D2R
    # create the algorith object
    algo = gps_odo.OdometerSim(ini_pos_vel_att)

    #### start simulation
    sim = ins_sim.Sim(
        [fs, fs, 0.0],  # imu, gps, no mag.
        motion_def_path +
        "//motion_def-ins_odo.csv",  #  motion_def-90deg_turn_gps    motion_def-ins_odo
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,
        algorithm=algo)
    # run the simulation for 1 times
    sim.run(1)
    # generate simulation results, summary
    # save results
    sim.results(err_stats_start=-1, gen_kml=True)
    sim.plot(['ref_pos', 'gyro', 'gps_visibility', 'accel'],
             opt={'ref_pos': '3d'})
Exemple #8
0
def test_free_integration():
    '''
    test Sim
    '''
    #### IMU model, typical for IMU381
    imu_err = {'gyro_b': np.array([0.0, 0.0, 0.0]),
               'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
               'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
               'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
               'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
               'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
               'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
               'accel_b_corr': np.array([200.0, 200.0, 200.0]),
               'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
              }
    odo_err = {'scale': 0.999,
               'stdv': 0.1}
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=False, odo=True, odo_opt=odo_err)

    #### Algorithm
    # Free integration in a virtual inertial frame
    from demo_algorithms import free_integration_odo
    from demo_algorithms import free_integration
    '''
    Free integration requires initial states (position, velocity and attitude). You should provide
    theses values when you create the algorithm object.
    '''
    ini_pos_vel_att = np.genfromtxt(motion_def_path+"//motion_def-90deg_turn.csv",\
                                    delimiter=',', skip_header=1, max_rows=1)
    ini_pos_vel_att[0] = ini_pos_vel_att[0] * D2R
    ini_pos_vel_att[1] = ini_pos_vel_att[1] * D2R
    ini_pos_vel_att[6:9] = ini_pos_vel_att[6:9] * D2R
    # add initial states error if needed
    ini_vel_err = np.array([0.0, 0.0, 0.0]) # initial velocity error in the body frame, m/s
    ini_att_err = np.array([0.0, 0.0, 0.0]) # initial Euler angles error, deg
    ini_pos_vel_att[3:6] += ini_vel_err
    ini_pos_vel_att[6:9] += ini_att_err * D2R
    # create the algorith object
    algo1 = free_integration_odo.FreeIntegration(ini_pos_vel_att)
    algo2 = free_integration.FreeIntegration(ini_pos_vel_att)

    #### start simulation
    sim = ins_sim.Sim([fs, 0.0, 0.0],
                      motion_def_path+"//motion_def-90deg_turn.csv",
                      ref_frame=1,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=[algo1, algo2])
    # run the simulation for 1000 times
    sim.run(10)
    # generate simulation results, summary
    # do not save data since the simulation runs for 1000 times and generates too many results
    sim.results(err_stats_start=-1, gen_kml=True)
Exemple #9
0
def test_path_gen():
    '''
    test only path generation in Sim.
    '''
    #### choose a built-in IMU model, typical for IMU381
    #imu_err = 'low-accuracy'
    #imu_err = 'mid-accuracy'

    imu_err = {
            # gyro bias, deg/hr
            'gyro_b': np.array([0.0014, 0.0014, 0.0014]),
            # gyro angle random walk, deg/rt-hr
            'gyro_arw': np.array([0.00016, 0.00016, 0.00016]),
            # gyro bias instability, deg/hr
            'gyro_b_stability': np.array([0.0, 0.0, 0.0]),
            # gyro bias instability correlation, sec.
            # set this to 'inf' to use a random walk model
            # set this to a positive real number to use a first-order Gauss-Markkov model
            'gyro_b_corr': np.array([np.Inf, np.Inf, np.Inf]),
            # accelerometer bias, m/s^2
            'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
            # accelerometer velocity random walk, m/s/rt-hr
            'accel_vrw': np.array([5.0e-6, 5.0e-6, 5.0e-6]),
            # accelerometer bias instability, m/s^2
            'accel_b_stability': np.array([0.60e-3, 0.60e-3, 0.80e-3]),
            # accelerometer bias instability correlation, sec. Similar to gyro_b_corr
            'accel_b_corr': np.array([np.Inf, np.Inf, np.Inf]),
            # magnetometer noise std, uT
            'mag_std': np.array([0.2, 0.2, 0.2])
          }
    gps_err = {'stdp': np.array([5.0, 5.0, 7.0]) * 0.2,
               'stdv': np.array([0.05, 0.05, 0.05]) * 1.0}
    odo_err = {'scale': 0.999,
               'stdv': 0.01}
    # generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True, gps_opt=gps_err,
                        odo=True, odo_opt=odo_err)

    #### start simulation
    sim = ins_sim.Sim([fs, fs_gps, fs_mag],
                      motion_def_path+"motion_def-Holland_tunnel.csv",
                      ref_frame=1,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=None)
    sim.run()
    # plot data, 3d plot of reference positoin, 2d plots of gyro and accel
    sim.plot(['ref_att_euler', 'gyro', 'mag', 'accel'], opt={'ref_pos': '2d'})
    # save simulation data to files
    res = []
    res = sim.get_data(['time', 'gps_time', 'ref_gps', 'ref_pos', 'ref_vel', 'ref_accel', 'ref_gyro', 'odo', 'gyro', 'mag', 'accel'])
    return res
Exemple #10
0
def get_gnss_ins_sim(motion_def_file, fs_imu, fs_gps):
    '''
    Generate simulated GNSS/IMU data using specified trajectory.
    '''
    # set IMU model:
    imu_err = 'low-accuracy'
    # generate GPS and magnetometer data:
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True)

    # init simulation:
    sim = ins_sim.Sim(
        [fs_imu, fs_gps, fs_imu],
        motion_def_file,
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,
        algorithm=None
    )
    
    # run:
    sim.run(1)

    # get simulated data:
    rospy.logwarn(
        "Simulated data size {}".format(
            len(sim.dmgr.get_data_all('gyro').data[0])
        )
    )

    # imu measurements:
    step_size = 1.0 / fs_imu
    for i, (gyro, accel) in enumerate(
        zip(
            # a. gyro
            sim.dmgr.get_data_all('gyro').data[0], 
            # b. accel
            sim.dmgr.get_data_all('accel').data[0]
        )
    ):
        yield {
            'stamp': i * step_size,
            'data': {
                # a. gyro:
                'gyro_x': gyro[0],
                'gyro_y': gyro[1],
                'gyro_z': gyro[2],
                # b. accel:
                'accel_x': accel[0],
                'accel_y': accel[1],
                'accel_z': accel[2]
            }
        }
Exemple #11
0
def test_dmu380_sim():
    '''
    test Sim with DMU380 algorithm.
    '''
    #### choose a built-in IMU model, typical for IMU380
    imu_err = {
        'gyro_b': np.array([1.0, -1.0, 0.5]) * 1800.0,
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([5.0e-3, 5.0e-3, 5.0e-3]) * 10.0,
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    gps_err = {
        'stdp': np.array([5.0, 5.0, 7.0]) * 0.2,
        'stdv': np.array([0.05, 0.05, 0.05]) * 1.0
    }
    # generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True, gps_opt=gps_err)

    #### Algorithm
    # DMU380 algorithm
    from demo_algorithms import aceinna_ins
    cfg_file = os.path.abspath(
        './/demo_algorithms//dmu380_sim_lib//ekfSim_ins.cfg')
    algo = aceinna_ins.DMU380Sim(cfg_file)

    #### start simulation
    sim = ins_sim.Sim(
        [fs, 1, fs],
        motion_def_path + "//motion_def-long_drive.csv",
        #   ".//demo_saved_data//2019-08-27-10-26-14//",
        ref_frame=0,
        imu=imu,
        mode=None,
        env='[0.01 0.01 0.11]g-random',
        algorithm=algo)
    sim.run(1)
    # generate simulation results, summary, and save data to files
    sim.results('.//demo_saved_data//tmp',
                err_stats_start=210,
                gen_kml=True,
                extra_opt='ned')
    # plot data
    sim.plot(['pos', 'vel', 'wb', 'ab', 'att_euler'],
             opt={
                 'pos': 'error',
                 'vel': 'error',
                 'att_euler': 'error'
             })
def mahony_filter_test():
    '''
    test Sim
    '''
    #### IMU model, typical for IMU381
    imu_err = {
        'gyro_b': np.array([0.0, 0.0, 0.0]),
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    # do not generate GPS data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=False)

    #### Algorithm
    # mahony filter in a virtual inertial frame.
    from demo_algorithms import vg_mahony
    '''
    calculate pitch, roll (and yaw if input mag data) by mahony filter.
    '''
    # create the algorith object
    algo = vg_mahony.MahonyTest()

    #### start simulation
    sim = ins_sim.Sim(
        [fs, 0.0, 0.0],
        # '/Users/songyang/project/code/github/gnss-ins-sim_learn/demo_data_files/bosch',
        motion_def_path +
        "//motion_def-90deg_turn_gps.csv",  #motion_def.csv   motion_def-90deg_turn.csv
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,
        algorithm=[algo])
    # run the simulation for 1000 times
    sim.run(1)
    # generate simulation results, summary
    # do not save data since the simulation runs for 1000 times and generates too many results
    sim.results(err_stats_start=-1, gen_kml=True)
    # plot postion error
    # sim.plot(['pos'], opt={'pos':'error'})
    sim.plot(['att_euler'], opt={'att_euler': 'error'})
Exemple #13
0
def test_mag_cal():
    '''
    test soft iron and hard iron calibration.
    '''
    print("This demo only runs on Ubuntu x64.")
    #### IMU model, typical for IMU381
    imu_err = 'mid-accuracy'
    # do not generate GPS data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=False)
    mag_error = {
        'si': np.eye(3) + np.random.randn(3, 3) * 0.1,
        'hi': np.array([10.0, 10.0, 10.0]) * 1.0
    }
    imu.set_mag_error(mag_error)
    #### Algorithm
    from demo_algorithms import mag_calibrate
    algo = mag_calibrate.MagCal()

    #### start simulation
    sim = ins_sim.Sim(
        [fs, fs_gps, fs_mag],
        motion_def_path + "//motion_def_mag_cal.csv",
        #   motion_def_path+"//test_mag_cal//",
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,
        algorithm=algo)
    sim.run(1)
    # save simulation data to files
    sim.results()
    # plot data
    sim.plot(['mag', 'mag_cal'],
             opt={
                 'mag': 'projection',
                 'mag_cal': 'projection'
             },
             extra_opt='.')
    # show calibration params:
    print('true soft iron is:')
    print(np.linalg.inv(mag_error['si']))
    print('estimated soft iron is:')
    print(sim.dmgr.soft_iron.data)
    print('true hard iron is:')
    print(mag_error['hi'])
    print('estimated hard iron is:')
    print(sim.dmgr.hard_iron.data)
def imu_creation(arw_input=.25, odo_scale=.999, odo_noise=.1, bias_input=3.5):
    """
    Create the IMU object from the library. Currently setup to operate as a 6 axis IMU, allowing odometer input, without GPS.
    There are three built-in IMU models: 'low-accuracy', 'mid-accuracy' and 'high accuracy'.

    Inputs: Currently, the gyro angle random walk, odometer scale error, odometer noise, and gyro bias instability. These
    could be expanded to include other sources of error, for instance in the accelerometer.

    Returns: An IMU object

    """
    # IMU model, typical for IMU381ZA
    imu_err = {
        'gyro_b': np.array([0.0, 0.0, 0.0]),
        # gyro angle random walk, deg/rt-hr
        'gyro_arw': np.array([arw_input, arw_input, arw_input]) * 1.0,
        # gyro bias instability, deg/hr
        'gyro_b_stability': np.array([bias_input, bias_input, bias_input]),
        # gyro bias instability correlation, sec.
        # set this to 'inf' to use a random walk model
        # set this to a positive real number to use a first-order Gauss-Markkov model
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        # accelerometer bias, m/s^2
        'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
        # accelerometer velocity random walk, m/s/rt-hr
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        # accelerometer bias instability, m/s^2
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        # accelerometer bias instability correlation, sec. Similar to gyro_b_corr
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        # magnetometer noise std, uT
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }

    odo_err = {'scale': odo_scale, 'stdv': odo_noise}

    # create imu object
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err,
                        axis=9,
                        gps=False,
                        odo=True,
                        odo_opt=odo_err)

    return imu
Exemple #15
0
def gen_data_first(data_dir, fileName="motion_tmp.csv"):
    '''
    Generate data that will be used by test_gen_data_from_files()
    '''
    # imu model
    imu = imu_model.IMU(accuracy='mid-accuracy', axis=6, gps=False)

    # start simulation
    sim = ins_sim.Sim([fs, fs_gps, fs_mag],
                      motion_def_path + "//" + fileName,
                      ref_frame=0,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=None)
    sim.run(10)
    # save simulation data to files
    sim.results(data_dir, stdout=False)
def test_dmu380_sim():
    '''
    test Sim with DMU380 algorithm.
    '''
    print("This demo only runs on Ubuntu x64.")
    #### choose a built-in IMU model, typical for IMU380
    imu_err = {
        'gyro_b': np.array([1.0, -1.0, 0.5]) * 1.0,
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([50.0e-3, 50.0e-3, 50.0e-3]),
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=False)

    #### Algorithm
    # DMU380 algorithm
    from demo_algorithms import dmu380_sim
    cfg_file = os.path.abspath(
        './/demo_algorithms//dmu380_sim_lib//ekfSim_tilt.cfg')
    algo = dmu380_sim.DMU380Sim(cfg_file)

    #### start simulation
    sim = ins_sim.Sim(
        [fs, 0.0, fs],
        #   motion_def_path+"//motion_def-static.csv",
        "//mnt//share//jd_figure8.csv",
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,  #'[0.1 0.01 0.11]g-random',
        algorithm=algo)
    sim.run(1)
    # generate simulation results, summary, and save data to files
    sim.results('aa')  # do not save data
    # plot data
    sim.plot(['att_euler', 'ref_pos'], opt={'ref_pos': 'projection'})
def test_path_gen():
    '''
    test only path generation in Sim.
    '''
    #### choose a built-in IMU model, typical for IMU381
    imu_err = 'mid-accuracy'
    # generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True)

    #### start simulation
    sim = imu_sim.Sim([fs, fs_gps, fs_mag], imu, motion_def_path+"//motion_def.csv",
                      ref_frame=1,
                      mode=None,
                      env=None,
                      algorithm=None)
    sim.run(1)
    # save simulation data to files
    sim.results('.//demo_saved_data//')
    # plot data, 3d plot of reference positoin, 2d plots of gyro and accel
    sim.plot(['ref_pos', 'gyro', 'accel'], opt={'ref_pos': '3d'})
Exemple #18
0
def test_dmu380_sim():
    '''
    test Sim with DMU380 algorithm.
    '''
    #### choose a built-in IMU model, typical for IMU380
    imu_err = {
        'gyro_b': np.array([1.0, -1.0, 0.5]) * 1.0,
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([50.0e-3, 50.0e-3, 50.0e-3]) * 0.0,
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=False)

    #### Algorithm
    # DMU380 algorithm
    from demo_algorithms import aceinna_vg
    cfg_file = os.path.abspath(
        './/demo_algorithms//dmu380_sim_lib//ekfSim_tilt.cfg')
    algo = aceinna_vg.DMU380Sim(cfg_file)

    #### start simulation
    sim = ins_sim.Sim(
        [fs, 0.0, fs],
        motion_def_path + "//motion_def-static.csv",
        #   ".//demo_saved_data//car_test_20180929//",
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,  #'[0.1 0.01 0.11]g-random',
        algorithm=algo)
    sim.run(1)
    # generate simulation results, summary, and save data to files
    sim.results()  # do not save data
    # plot data
    sim.plot(['att_euler', 'ref_pos'], opt={'att_euler': 'error'})
def run_and_save_results(args, motion_def):
    resultsdir = args.outdir
    stagingdir = os.path.join(resultsdir, "staging")
    # Before running, warn if the resultsdir holds existing results.
    if glob.glob("{}/dr_*.csv".format(resultsdir)):
        print(
            "WARNING: DR trajectory results already exist in the given results directory."
        )
        print("         You may end up with a mismatched set.")
    # Setup and run N simulations.
    imu = imu_model.IMU(accuracy=IMU_MODELS[args.imu], axis=6, gps=False)
    ini_pos_vel_att = read_initial_condition(motion_def)
    for i in range(args.N):
        if args.enable_init_error:
            init_cond = perturbed_initial_condition(ini_pos_vel_att)
        else:
            init_cond = ini_pos_vel_att
        if args.enable_vibrations:
            env = DEFAULT_VIBRATIONS
        else:
            env = None
        algo = FreeIntegrationWithVel(init_cond,
                                      meas_vel_stddev=args.odom_sigma)
        sim = ins_sim.Sim([args.fs, 0.0, 0.0],
                          motion_def,
                          ref_frame=0,
                          imu=imu,
                          mode=None,
                          env=env,
                          algorithm=algo)
        sim.run(1)
        # We don't care for the printed results.
        with open(os.devnull, 'w') as devnull:
            stdout = sys.stdout
            sys.stdout = devnull
            sim.results(stagingdir, end_point=True)
            sys.stdout = stdout
        collate_sim_results(stagingdir,
                            os.path.join(resultsdir, "dr_{}.csv".format(i)))
    shutil.rmtree(stagingdir)
def test_inclinometer_mahony():
    '''
    test Sim with a inclinometer algorithm based on Mahony's theory.
    '''
    #### choose a built-in IMU model, typical for IMU380
    imu_err = {
        'gyro_b': np.array([5.0, -5.0, 2.5]) * 3600.0,
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([50.0e-3, 50.0e-3, 50.0e-3]) * 0.0,
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=False)

    #### Algorithm
    # ECF based inclinometer
    from demo_algorithms import inclinometer_mahony
    algo = inclinometer_mahony.MahonyFilter()

    #### start simulation
    sim = ins_sim.Sim(
        [fs, 0.0, 0.0],
        motion_def_path + "//motion_def.csv",
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,  #'[0.01 0.01 0.11]g-random',
        algorithm=algo)
    sim.run()
    # generate simulation results, summary, and save data to files
    sim.results()  # do not save data
    # plot data
    sim.plot(['att_euler', 'wb', 'ab'], opt={'att_euler': 'error'})
def test_ins_loose():
    '''
    test Sim
    '''
    #### IMU model, typical for IMU381
    imu_err = {
        'gyro_b': np.array([0.0, 0.0, 0.0]),
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=True)

    #### Algorithm
    # loosely couple INS algorithm
    from demo_algorithms import ins_loose
    algo = ins_loose.InsLoose()

    #### start simulation
    sim = ins_sim.Sim([fs, fs_gps, 0.0],
                      motion_def_path + "//motion_def-90deg_turn.csv",
                      ref_frame=0,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=algo)
    # run the simulation for 1000 times
    sim.run()
    # generate simulation results, summary
    # do not save data since the simulation runs for 1000 times and generates too many results
    sim.results(end_point=True)
    sim.plot(['ref_pos', 'pos'], opt={'ref_pos': '3d'})
def test_allan():
    '''
    An Allan analysis demo for Sim.
    '''
    #### Customized IMU model parameters, typical for IMU381
    imu_err = {
        'gyro_b': np.array([0.0, 0.0, 0.0]),
        'gyro_arw': np.array([0.25, 0.25, 0.25]) * 1.0,
        'gyro_b_stability': np.array([3.5, 3.5, 3.5]) * 1.0,
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
        'accel_vrw': np.array([0.03119, 0.03009, 0.04779]) * 1.0,
        'accel_b_stability': np.array([4.29e-5, 5.72e-5, 8.02e-5]) * 1.0,
        'accel_b_corr': np.array([200.0, 200.0, 200.0]),
        'mag_std': np.array([0.2, 0.2, 0.2]) * 1.0
    }
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err, axis=6, gps=False)

    #### Allan analysis algorithm
    from demo_algorithms import allan_analysis
    algo = allan_analysis.Allan()

    #### start simulation
    sim = ins_sim.Sim([fs, 0.0, 0.0],
                      motion_def_path + "//motion_def-Allan.csv",
                      ref_frame=1,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=algo)
    sim.run()
    # generate simulation results, summary, and save data to files
    sim.results()  # save data files
    # plot data
    sim.plot(['ad_accel', 'ad_gyro'])
Exemple #23
0
def get_gnss_ins_sim(motion_def_file, fs_imu, fs_gps):
    '''
    Generate simulated GNSS/IMU data using specified trajectory.
    '''
    # set IMU model:
    D2R = math.pi / 180.0
    # imu_err = 'low-accuracy'
    imu_err = {
        # 1. gyro:
        # a. random noise:
        # gyro angle random walk, deg/rt-hr
        'gyro_arw': np.array([0., 0., 0.]),
        # gyro bias instability, deg/hr
        'gyro_b_stability': np.array([0.0, 0.0, 0.0]),
        # gyro bias isntability correlation time, sec
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        # b. deterministic error:
        'gyro_b': np.array([0.0, 0.0, 0.0]),
        'gyro_k': np.array([1.0, 1.0, 1.0]),
        'gyro_s': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
        # 2. accel:
        # a. random noise:
        # accel velocity random walk, m/s/rt-hr
        'accel_vrw': np.array([0., 0., 0.]),
        # accel bias instability, m/s2
        'accel_b_stability': np.array([0., 0., 0.]),
        # accel bias isntability correlation time, sec
        'accel_b_corr': np.array([100.0, 100.0, 100.0]),
        # b. deterministic error:
        'accel_b': np.array([0.0, 0.0, 0.0]),
        'accel_k': np.array([1.0, 1.0, 1.0]),
        'accel_s': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
        # 3. mag:
        'mag_si': np.eye(3) + np.random.randn(3, 3) * 0.0,
        'mag_hi': np.array([10.0, 10.0, 10.0]) * 0.0,
        'mag_std': np.array([0.1, 0.1, 0.1])
    }
    # generate GPS and magnetometer data:
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True)

    # init simulation:
    sim = ins_sim.Sim([fs_imu, fs_gps, fs_imu],
                      motion_def_file,
                      ref_frame=1,
                      imu=imu,
                      mode=None,
                      env=None,
                      algorithm=None)

    # true pos init xyz
    init_lla = np.array([31.224361, 121.469170, 0])
    init_xyz = geoparams.lla2ecef(init_lla)
    print(init_xyz)

    # run:
    sim.run(1)

    # get simulated data:
    rospy.logwarn('Simulated data size: Gyro-{}, Accel-{}, pos-{}'.format(
        len(sim.dmgr.get_data_all('gyro').data[0]),
        len(sim.dmgr.get_data_all('accel').data[0]),
        len(sim.dmgr.get_data_all('ref_pos').data)))

    # imu measurements:
    step_size = 1.0 / fs_imu
    for i, (gyro, accel, ref_q, ref_pos, ref_vel) in enumerate(
            zip(
                # a. gyro
                sim.dmgr.get_data_all('gyro').data[0],
                # b. accel
                sim.dmgr.get_data_all('accel').data[0],
                # c. true pose
                sim.dmgr.get_data_all('ref_att_quat').data,
                sim.dmgr.get_data_all('ref_pos').data,
                #d. true vel
                sim.dmgr.get_data_all('ref_vel').data)):
        yield {
            'stamp': i * step_size,
            'data': {
                # a. gyro:
                'gyro_x': gyro[0],
                'gyro_y': gyro[1],
                'gyro_z': gyro[2],
                # b. accel:
                'accel_x': accel[0],
                'accel_y': accel[1],
                'accel_z': accel[2],
                # c. orientation:
                'gt_quat_w': ref_q[0],
                'gt_quat_x': ref_q[1],
                'gt_quat_y': ref_q[2],
                'gt_quat_z': ref_q[3],
                #d. position
                'gt_pos_x': ref_pos[0] + 2849886.61825,
                'gt_pos_y': ref_pos[1] - 4656214.27294,
                'gt_pos_z': ref_pos[2] - 3287190.60046,
                #e. velocity
                'gt_vel_x': ref_vel[0],
                'gt_vel_y': ref_vel[1],
                'gt_vel_z': ref_vel[2]
            }
        }

    sim.results()
    sim.plot(['ref_pos', 'ref_vel'], opt={'ref_pos': '3d'})
Exemple #24
0
def run_simulation(data, fileName, request_body):
    '''
    An Allan analysis demo for Sim.
    '''
    #### Customized IMU model parameters, typical for IMU381
    rateJSON = json.loads(data.rateJSON, object_hook=JSONObject)
    accelJSON = json.loads(data.accelJSON, object_hook=JSONObject)
    axisNum = 6
    gpsFlag = False
    gpsObj = {}
    imu_err = {
        'gyro_b':
        np.array(
            [float(rateJSON.b[0]),
             float(rateJSON.b[1]),
             float(rateJSON.b[2])]),
        'gyro_arw':
        np.array([
            float(rateJSON.arw[0]),
            float(rateJSON.arw[1]),
            float(rateJSON.arw[2])
        ]) * 1.0,
        'gyro_b_stability':
        np.array([
            float(rateJSON.b_drift[0]),
            float(rateJSON.b_drift[1]),
            float(rateJSON.b_drift[2])
        ]) * 1.0,
        'gyro_b_corr':
        np.array([
            float(rateJSON.b_corr[0]),
            float(rateJSON.b_corr[1]),
            float(rateJSON.b_corr[2])
        ]),
        'accel_b':
        np.array([
            float(accelJSON.b[0]),
            float(accelJSON.b[1]),
            float(accelJSON.b[2])
        ]),
        'accel_vrw':
        np.array([
            float(accelJSON.vrw[0]),
            float(accelJSON.vrw[1]),
            float(accelJSON.vrw[2])
        ]) * 1.0,
        'accel_b_stability':
        np.array([
            float(accelJSON.b_drift[0]),
            float(accelJSON.b_drift[1]),
            float(accelJSON.b_drift[2])
        ]) * 1.0,
        'accel_b_corr':
        np.array([
            float(accelJSON.b_corr[0]),
            float(accelJSON.b_corr[1]),
            float(accelJSON.b_corr[2])
        ])
    }

    if 'magJSON' in request_body:
        axisNum = 9
        magJSON = json.loads(data.magJSON, object_hook=JSONObject)
        imu_err['mag_std'] = np.array([
            float(magJSON.std[0]),
            float(magJSON.std[1]),
            float(magJSON.std[2])
        ]) * 1.0
        if 'si' in data.magJSON:
            imu_err['mag_si'] = np.array([[
                float(magJSON.si[0]),
                float(magJSON.si[1]),
                float(magJSON.si[2])
            ],
                                          [
                                              float(magJSON.si[3]),
                                              float(magJSON.si[4]),
                                              float(magJSON.si[5])
                                          ],
                                          [
                                              float(magJSON.si[6]),
                                              float(magJSON.si[7]),
                                              float(magJSON.si[8])
                                          ]])
        if 'hi' in data.magJSON:
            imu_err['mag_hi'] = np.array([
                float(magJSON.hi[0]),
                float(magJSON.hi[1]),
                float(magJSON.hi[2])
            ])
    if 'gpsJSON' in request_body:
        gpsFlag = True
        gpsJSON = json.loads(data.gpsJSON, object_hook=JSONObject)
        gpsObj['stdp'] = np.array([
            float(gpsJSON.stdp[0]),
            float(gpsJSON.stdp[1]),
            float(gpsJSON.stdp[2])
        ])
        gpsObj['stdv'] = np.array([
            float(gpsJSON.stdv[0]),
            float(gpsJSON.stdv[1]),
            float(gpsJSON.stdv[2])
        ])
        gpsObj['avail'] = 0.95
    # do not generate GPS and magnetometer data
    imu = imu_model.IMU(accuracy=imu_err,
                        axis=axisNum,
                        gps=gpsFlag,
                        gps_opt=gpsObj)
    if data.algorithmName == 'Allan':
        Allanfs = 100.0  # IMU sample frequency
        #### Allan analysis algorithm
        from demo_algorithms import allan_analysis
        algo = allan_analysis.Allan()
        #### start simulation
        sim = ins_sim.Sim([Allanfs, Allanfs, 0.0],
                          motion_def_path + "//motion_def-Allan.csv",
                          ref_frame=data.ref_frame,
                          imu=imu,
                          mode=None,
                          env=None,
                          algorithm=algo,
                          fileName=fileName,
                          data=data)
        sim.run(data.algorithmRunTimes)
        # generate simulation results, summary, and save data to files
        sim.results(fileName, gen_kml=True,
                    update_flag=True)  # save data files
        # plot data
        #sim.plot(['ad_accel', 'ad_gyro'])

    elif data.algorithmName == 'FreeIntegration':
        Freefs = 100.0  # IMU sample frequency
        # Free integration in a virtual inertial frame
        ini_pos_vel_att = np.fromstring(data.algorithmParams,
                                        dtype=float,
                                        sep=',')
        #ini_pos_vel_att[0] = ini_pos_vel_att[0] * D2R
        #ini_pos_vel_att[1] = ini_pos_vel_att[1] * D2R
        #ini_pos_vel_att[6:9] = ini_pos_vel_att[6:9] * D2R
        # add initial states error if needed
        #ini_vel_err = np.array([0.0, 0.0, 0.0]) # initial velocity error in the body frame, m/s
        #ini_att_err = np.array([0.0, 0.0, 0.0]) # initial Euler angles error, deg
        #ini_pos_vel_att[3:6] += ini_vel_err
        #ini_pos_vel_att[6:9] += ini_att_err * D2R

        from demo_algorithms import free_integration
        algo = free_integration.FreeIntegration(ini_pos_vel_att)
        staticsFlag = data.algorithmStatistics == 'end-point'
        sim = ins_sim.Sim([Freefs, Freefs, 0.0],
                          motion_def_path + "//motion_def-90deg_turn.csv",
                          ref_frame=data.ref_frame,
                          imu=imu,
                          mode=None,
                          env=None,
                          algorithm=algo,
                          fileName=fileName,
                          data=data)
        # run the simulation for 1000 times
        sim.run(data.algorithmRunTimes)
        # generate simulation results, summary
        # do not save data since the simulation runs for 1000 times and generates too many results
        sim.results(fileName,
                    gen_kml=True,
                    end_point=staticsFlag,
                    update_flag=True,
                    extra_opt='ned')

    elif data.algorithmName == 'VG':
        VGfs = 200.0  # IMU sample frequency
        from demo_algorithms import aceinna_vg
        cfg_file = os.path.abspath(
            './/demo_algorithms//dmu380_sim_lib//ekfSim_tilt.cfg')
        algo = aceinna_vg.DMU380Sim(cfg_file)
        sim = ins_sim.Sim(
            [VGfs, VGfs, VGfs],
            "//mnt//share//jd_figure8.csv",
            ref_frame=data.ref_frame,
            imu=imu,
            mode=None,
            env=None,  #'[0.1 0.01 0.11]g-random',
            algorithm=algo,
            fileName=fileName,
            data=data)
        sim.run(data.algorithmRunTimes)
        # generate simulation results, summary, and save data to files
        sim.results(
            fileName,
            gen_kml=True,
            update_flag=True,
        )  # do not save data

    elif data.algorithmName == 'INS':
        INSfs = 200.0  # IMU sample frequency
        from demo_algorithms import aceinna_ins
        cfg_file = os.path.abspath(
            './/demo_algorithms//dmu380_sim_lib//ekfSim_ins.cfg')
        algo = aceinna_ins.DMU380Sim(cfg_file)
        sim = ins_sim.Sim(
            [INSfs, INSfs, INSfs],
            "//mnt//share//jd_figure8.csv",
            ref_frame=data.ref_frame,
            imu=imu,
            mode=None,
            env=None,  #'[0.1 0.01 0.11]g-random',
            algorithm=algo,
            fileName=fileName,
            data=data)
        sim.run(data.algorithmRunTimes)
        # generate simulation results, summary, and save data to files
        sim.results(
            fileName,
            gen_kml=True,
            update_flag=True,
        )  # do not save data
Exemple #25
0
def get_gnss_ins_sim(motion_def_file, fs_imu, fs_gps):
    '''
    Generate simulated GNSS/IMU data using specified trajectory.
    '''
    # set IMU model:
    D2R = math.pi/180.0
    # imu_err = 'low-accuracy'
    imu_err = {
        # 1. gyro:
        # a. random noise:
        # gyro angle random walk, deg/rt-hr
        'gyro_arw': np.array([0.75, 0.75, 0.75]),
        # gyro bias instability, deg/hr
        'gyro_b_stability': np.array([10.0, 10.0, 10.0]),
        # gyro bias isntability correlation time, sec
        'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        # b. deterministic error:
        'gyro_b': np.array([0.0, 0.0, 0.0]),
        'gyro_k': np.array([1.0, 1.0, 1.0]),
        'gyro_s': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
        # 2. accel:
        # a. random noise:
        # accel velocity random walk, m/s/rt-hr
        'accel_vrw': np.array([0.05, 0.05, 0.05]),
        # accel bias instability, m/s2
        'accel_b_stability': np.array([2.0e-4, 2.0e-4, 2.0e-4]),
        # accel bias isntability correlation time, sec
        'accel_b_corr': np.array([100.0, 100.0, 100.0]),
        # b. deterministic error:
        'accel_b': np.array([0.0e-3, 0.0e-3, 0.0e-3]),
        'accel_k': np.array([1.0, 1.0, 1.0]),
        'accel_s': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]),
        # 3. mag:
        'mag_si': np.eye(3) + np.random.randn(3, 3)*0.0, 
        'mag_hi': np.array([10.0, 10.0, 10.0])*0.0,
        'mag_std': np.array([0.1, 0.1, 0.1])
    }
    
    
    # generate GPS and magnetometer data:
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True)

    # init simulation:
    sim = ins_sim.Sim(
        [fs_imu, fs_gps, fs_imu],
        motion_def_file,
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,
        algorithm=None
    )
    
    # run:
    sim.run(1)

    # get simulated data:
    rospy.logwarn(
        "Simulated data size {}".format(
            len(sim.dmgr.get_data_all('gyro').data[0])
        )
    )

    # imu measurements:
    step_size = 1.0 / fs_imu
    for i, (gyro, accel, ref_pos, ref_vel, ref_att_quat) in enumerate(
        zip(
            # a. gyro
            sim.dmgr.get_data_all('ref_gyro').data, 
            # b. accel
            sim.dmgr.get_data_all('ref_accel').data,
            # c. ref_pos
            sim.dmgr.get_data_all('ref_pos').data,
            # d. ref_vel
            sim.dmgr.get_data_all('ref_vel').data,
            # e. ref_att_quat
            sim.dmgr.get_data_all('ref_att_quat').data
        )
    ):
        yield {
            'stamp': i * step_size,
            'data': {
                # a. gyro:
                'gyro_x': gyro[0],
                'gyro_y': gyro[1],
                'gyro_z': gyro[2],
                # b. accel:
                'accel_x': accel[0],
                'accel_y': accel[1],
                'accel_z': accel[2],
                # c. ref_pos:
                'ref_pos_x': ref_pos[0],
                'ref_pos_y': ref_pos[1],
                'ref_pos_z': ref_pos[2],
                # d. ref_vel:
                'ref_vel_x': ref_vel[0],
                'ref_vel_y': ref_vel[1],
                'ref_vel_z': ref_vel[2],
                # e. ref_att_quat:
                'ref_att_quat_w': ref_att_quat[0],
                'ref_att_quat_x': ref_att_quat[1],
                'ref_att_quat_y': ref_att_quat[2], 
                'ref_att_quat_z': ref_att_quat[3]
            }
        }
def get_gnss_ins_sim(motion_def_file, fs_imu, fs_gps):
    '''
    Generate simulated GNSS/IMU data using specified trajectory.
    '''
    # set IMU model:
    D2R = math.pi / 180.0
    # imu_err = 'low-accuracy'
    imu_err = {
        # 1. gyro:
        # a. random noise:
        # gyro angle random walk, deg/rt-hr
        # 'gyro_arw': np.array([0.75, 0.75, 0.75]),
        'gyro_arw': np.array([0.00, 0.00, 0.00]),
        # gyro bias instability, deg/hr
        # 'gyro_b_stability': np.array([10.0, 10.0, 10.0]),
        'gyro_b_stability': np.array([0.0, 0.0, 0.0]),
        # gyro bias isntability correlation time, sec
        # 'gyro_b_corr': np.array([100.0, 100.0, 100.0]),
        # b. deterministic error:
        'gyro_b': np.array([36.00, 36.00, 36.00]),
        'gyro_k': np.array([0.98, 0.98, 0.98]),
        'gyro_s': np.array([0.01, 0.01, 0.01, 0.01, 0.01, 0.01]),
        # 2. accel:
        # a. random noise:
        # accel velocity random walk, m/s/rt-hr
        'accel_vrw': np.array([0.05, 0.05, 0.05]),
        # accel bias instability, m/s2
        'accel_b_stability': np.array([2.0e-4, 2.0e-4, 2.0e-4]),
        # accel bias isntability correlation time, sec
        'accel_b_corr': np.array([100.0, 100.0, 100.0]),
        # b. deterministic error:
        'accel_b': np.array([0.01, 0.01, 0.01]),
        'accel_k': np.array([0.98, 0.98, 0.98]),
        'accel_s': np.array([0.01, 0.01, 0.01, 0.01, 0.01, 0.01]),
        # 3. mag:
        'mag_si': np.eye(3) + np.random.randn(3, 3) * 0.0,
        'mag_hi': np.array([10.0, 10.0, 10.0]) * 0.0,
        'mag_std': np.array([0.1, 0.1, 0.1])
    }
    # generate GPS and magnetometer data:
    imu = imu_model.IMU(accuracy=imu_err, axis=9, gps=True)

    # init simulation:
    sim = ins_sim.Sim(
        # here sync GPS with other measurements as marker:
        [fs_imu, fs_imu, fs_imu],
        motion_def_file,
        ref_frame=1,
        imu=imu,
        mode=None,
        env=None,
        algorithm=None)

    # run:
    sim.run(1)

    # get simulated data:
    rospy.logwarn(
        'Simulated data size: Gyro-{}, Accel-{}, GPS Availability-{}'.format(
            len(sim.dmgr.get_data_all('gyro').data[0]),
            len(sim.dmgr.get_data_all('accel').data[0]),
            len(sim.dmgr.get_data_all('gps_visibility').data)))

    # calibration stages:
    STEP_SIZE = 1.0 / fs_imu

    STAGES = [
        'rotate_z_pos', 'rotate_z_neg', 'rotate_y_pos', 'rotate_y_neg',
        'rotate_x_pos', 'rotate_x_neg', 'static_z_pos', 'static_z_neg',
        'static_y_pos', 'static_y_neg', 'static_x_pos', 'static_x_neg'
    ]
    stage_id = 0

    last_gps_visibility = True
    curr_gps_visibility = True
    for i, (gyro, accel, ref_gyro, ref_accel, gps_visibility) in enumerate(
            zip(
                # a. gyro:
                sim.dmgr.get_data_all('gyro').data[0],
                # b. accel:
                sim.dmgr.get_data_all('accel').data[0],
                # c. ref gyro:
                sim.dmgr.get_data_all('ref_gyro').data,
                # d. ref accel:
                sim.dmgr.get_data_all('ref_accel').data,
                # e. gps visibility as marker:
                sim.dmgr.get_data_all('gps_visibility').data)):
        last_gps_visibility = curr_gps_visibility
        curr_gps_visibility = gps_visibility

        if (not last_gps_visibility) and curr_gps_visibility:
            stage_id += 1

        if not curr_gps_visibility:
            continue

        yield {
            'stamp': i * STEP_SIZE,
            # a. gyro:
            'gyro_x': gyro[0],
            'gyro_y': gyro[1],
            'gyro_z': gyro[2],
            # b. accel:
            'accel_x': accel[0],
            'accel_y': accel[1],
            'accel_z': accel[2],
            # c. gyro:
            'ref_gyro_x': ref_gyro[0],
            'ref_gyro_y': ref_gyro[1],
            'ref_gyro_z': ref_gyro[2],
            # d. accel:
            'ref_accel_x': ref_accel[0],
            'ref_accel_y': ref_accel[1],
            'ref_accel_z': ref_accel[2],
            # e. stage:
            'stage': STAGES[stage_id]
        }
Exemple #27
0
def get_gnss_ins_sim(motion_def_file,
                     fs_imu,
                     fs_gps,
                     imu_error_level='high_accuracy',
                     mag_error_level='mid_accuracy',
                     gps_error_level='mid_accuracy',
                     odo_error_level='mid_accuracy'):
    """
    Generate simulated 
        IMU, 
        magnetometer, 
        GPS, 
        odometer 
    data using specified trajectory
    """
    #
    # set IMU model:
    #

    # for error-state Kalman filter observability & the degree of observability analysis
    # remove deterministic error and random noise:
    imu_err = config['imu'][imu_error_level].copy()
    imu_err.update(config['mag'][mag_error_level])

    gps_err = config['gps'][gps_error_level]
    odo_err = config['odo'][odo_error_level]

    # show device error level config:
    for k in imu_err:
        rospy.logwarn("{}: {}".format(k, imu_err[k]))
    for k in gps_err:
        rospy.logwarn("{}: {}".format(k, gps_err[k]))
    for k in odo_err:
        rospy.logwarn("{}: {}".format(k, odo_err[k]))

    # generate GPS and magnetometer data:
    imu = imu_model.IMU(accuracy=imu_err,
                        axis=9,
                        gps=True,
                        gps_opt=gps_err,
                        odo=True,
                        odo_opt=odo_err)

    # init simulation:
    sim = ins_sim.Sim(
        # here sync GPS with other measurements as marker:
        [fs_imu, fs_imu, fs_imu],
        motion_def_file,
        # use NED frame:
        ref_frame=0,
        imu=imu,
        mode=None,
        env=None,
        algorithm=None)

    # run:
    sim.run(1)

    # get simulated data:
    rospy.logwarn("""
        GNSS-INS-Sim Summary:
        \tIMU Measurement:
        \t\tGyroscope: {}
        \t\tAccelerometer: {}
        \t\tMagnetometer: {}
        \tGNSS Measurement:
        \t\tLLA: {}
        \t\tNED Velocity: {}
        \tOdometry:
        \t\tVelocity: {}
        \tReference Trajectory:
        \t\tPosition: {}
        \t\tVelocity: {}
        \t\tOrientation in Quaternion: {}
        """.format(
        # a. IMU:
        repr(sim.dmgr.get_data_all('gyro').data[0].shape),
        repr(sim.dmgr.get_data_all('accel').data[0].shape),
        repr(sim.dmgr.get_data_all('mag').data[0].shape),
        # b. GNSS:
        repr(sim.dmgr.get_data_all('gps').data[0][:, :3].shape),
        repr(sim.dmgr.get_data_all('gps').data[0][:, 3:].shape),
        # c. odometry:
        repr(sim.dmgr.get_data_all('odo').data[0].shape),
        # d. reference trajectory:
        repr(sim.dmgr.get_data_all('ref_pos').data.shape),
        repr(sim.dmgr.get_data_all('ref_vel').data.shape),
        repr(sim.dmgr.get_data_all('ref_att_quat').data.shape),
    ))

    # init timer:
    timestamp_start = rospy.Time.now()
    STEP_SIZE = 1.0 / fs_imu

    # yield init pose:
    init_pose_msg = get_init_pose(timestamp_start, motion_def_file)
    yield init_pose_msg

    # yield measurements:
    for i, (
            # a. IMU:
            gyro,
            accel,
            mag,
            # b. GNSS:
            gps_pos,
            gps_vel,
            # c. odometry:
            odo_x,
            # d. reference trajectory:
            ref_pos,
            ref_vel,
            ref_att_quat) in enumerate(
                zip(
                    # a. IMU:
                    sim.dmgr.get_data_all('gyro').data[0],
                    sim.dmgr.get_data_all('accel').data[0],
                    sim.dmgr.get_data_all('mag').data[0],
                    # b. GNSS:
                    sim.dmgr.get_data_all('gps').data[0][:, :3],
                    sim.dmgr.get_data_all('gps').data[0][:, 3:],
                    # c. odometry velocity:
                    sim.dmgr.get_data_all('odo').data[0],
                    # d. reference trajectory:
                    sim.dmgr.get_data_all('ref_pos').data,
                    sim.dmgr.get_data_all('ref_vel').data,
                    sim.dmgr.get_data_all('ref_att_quat').data)):
        # generate timestamp:
        stamp = timestamp_start + rospy.Duration.from_sec(i * STEP_SIZE)

        # a. IMU:
        imu_msg = get_imu_msg(stamp, gyro, accel)

        # b. magnetometer:
        mag_msg = get_mag_msg(stamp, mag)

        # c. GNSS:
        gps_pos_msg = get_gps_pos_msg(stamp, gps_pos)
        gps_vel_msg = get_gps_vel_msg(stamp, gps_vel)

        # d. odometer:
        odo_msg = get_odo_msg(
            stamp,
            # measurement is only available at forward direction
            np.array([odo_x, 0.0, 0.0]))

        # e. reference trajectory:
        reference_pose_msg = get_pose_msg(stamp, ref_pos, ref_vel,
                                          ref_att_quat)

        yield (imu_msg, mag_msg, gps_pos_msg, gps_vel_msg, odo_msg,
               reference_pose_msg)