def test_sf_tag(self):
        constA = [-3.0, -1.0, 1.0, 3]
        constB = [12.0, -12.0, 6.0, -6]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = (-3, -1, 1, 3,
                            -6, 6, -12, 12)
        first_tag = gr.tag_t()
        first_tag.key = pmt.intern("set_symbol_table")
        first_tag.value = pmt.init_f32vector(len(constA), constA)
        first_tag.offset = 0
        second_tag = gr.tag_t()
        second_tag.key = pmt.intern("set_symbol_table")
        second_tag.value = pmt.init_f32vector(len(constB), constB)
        second_tag.offset = 4

        src = blocks.vector_source_s(src_data, False, 1, [first_tag, second_tag])
        op = digital.chunks_to_symbols_sf(constB)

        dst = blocks.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
    def test_sf_tag(self):
        constA = [-3.0, -1.0, 1.0, 3]
        constB = [12.0, -12.0, 6.0, -6]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = [-3, -1, 1, 3, -6, 6, -12, 12]
        first_tag = gr.tag_t()
        first_tag.key = pmt.intern("set_symbol_table")
        first_tag.value = pmt.init_f32vector(len(constA), constA)
        first_tag.offset = 0
        second_tag = gr.tag_t()
        second_tag.key = pmt.intern("set_symbol_table")
        second_tag.value = pmt.init_f32vector(len(constB), constB)
        second_tag.offset = 4

        src = blocks.vector_source_s(src_data, False, 1,
                                     [first_tag, second_tag])
        op = digital.chunks_to_symbols_sf(constB)

        dst = blocks.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
def run_test (f,Kb,bitspersymbol,K,dimensionality,tot_constellation,N0,seed):
    tb = gr.top_block ()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the FSM)
    mod = digital.chunks_to_symbols_sf(tot_constellation,dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s();

    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics)
    tb.connect (metrics,va,fsmi2s,dst)

    tb.run()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    #print ntotal,nright,runlength

    return (ntotal,ntotal-nright)
Exemple #4
0
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
    tb = gr.top_block ()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc = trellis.sccc_encoder_ss(fo,0,fi,0,interleaver,K)
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    dec = trellis.sccc_decoder_combined_fs(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN,1.0)
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    #tb.connect (add,head)
    #tb.connect (tail,fsmi2s,dst)
    tb.connect (add,dec,fsmi2s,dst)

    tb.run()

    #print enc_out.ST(), enc_in.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    return (ntotal,ntotal-nright)
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
    tb = gr.top_block ()


    # TX
    #packet = [0]*Kb
    #for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0
        #packet[i] = random.randint(0, 1) # random 0s and 1s
    #src = blocks.vector_source_s(packet,False)
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
    #b2s = blocks.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    metrics = trellis.metrics_f(f.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    #s2b = blocks.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
    #dst = blocks.vector_sink_s();
    dst = blocks.check_lfsr_32k_s()


    tb.connect (src,src_head,s2fsmi,enc,mod)
    #tb.connect (src,b2s,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics)
    tb.connect (metrics,va,fsmi2s,dst)
    #tb.connect (metrics,va,fsmi2s,s2b,dst)


    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    #ntotal = len(packet)
    #if len(dst.data()) != ntotal:
        #print "Error: not enough data\n"
    #nright = 0;
    #for i in range(ntotal):
        #if packet[i]==dst.data()[i]:
            #nright=nright+1
        #else:
            #print "Error in ", i
    return (ntotal,ntotal-nright)
def run_test(f, Kb, bitspersymbol, K, channel, modulation, dimensionality,
             tot_constellation, N0, seed):
    tb = gr.top_block()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0] * (K + 2 * L)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2**bitspersymbol - 1)  # random symbols
    for i in range(L):  # first/last L symbols set to 0
        packet[i] = 0
        packet[len(packet) - i - 1] = 0
    src = blocks.vector_source_s(packet, False)
    mod = digital.chunks_to_symbols_sf(modulation[1], modulation[0])

    # CHANNEL
    isi = filter.fir_filter_fff(1, channel)
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    skip = blocks.skiphead(
        gr.sizeof_float, L
    )  # skip the first L samples since you know they are coming from the L zero symbols
    #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    #va = trellis.viterbi_s(f,K+L,0,0) # Put -1 if the Initial/Final states are not set.
    va = trellis.viterbi_combined_s(
        f, K + L, 0, 0, dimensionality, tot_constellation,
        digital.TRELLIS_EUCLIDEAN
    )  # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
    dst = blocks.vector_sink_s()

    tb.connect(src, mod)
    tb.connect(mod, isi, (add, 0))
    tb.connect(noise, (add, 1))
    #tb.connect (add,metrics)
    #tb.connect (metrics,va,dst)
    tb.connect(add, skip, va, dst)

    tb.run()

    data = dst.data()
    ntotal = len(data) - L
    nright = 0
    for i in range(ntotal):
        if packet[i + L] == data[i]:
            nright = nright + 1
        #else:
        #print "Error in ", i

    return (ntotal, ntotal - nright)
def run_test(f, Kb, bitspersymbol, K, channel, modulation, dimensionality, tot_constellation, N0, seed):
    tb = gr.top_block()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0] * (K + 2 * L)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2 ** bitspersymbol - 1)  # random symbols
    for i in range(L):  # first/last L symbols set to 0
        packet[i] = 0
        packet[len(packet) - i - 1] = 0
    src = blocks.vector_source_s(packet, False)
    mod = digital.chunks_to_symbols_sf(modulation[1], modulation[0])

    # CHANNEL
    isi = filter.fir_filter_fff(1, channel)
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    skip = blocks.skiphead(
        gr.sizeof_float, L
    )  # skip the first L samples since you know they are coming from the L zero symbols
    # metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    # va = trellis.viterbi_s(f,K+L,0,0) # Put -1 if the Initial/Final states are not set.
    va = trellis.viterbi_combined_s(
        f, K + L, 0, 0, dimensionality, tot_constellation, digital.TRELLIS_EUCLIDEAN
    )  # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
    dst = blocks.vector_sink_s()

    tb.connect(src, mod)
    tb.connect(mod, isi, (add, 0))
    tb.connect(noise, (add, 1))
    # tb.connect (add,metrics)
    # tb.connect (metrics,va,dst)
    tb.connect(add, skip, va, dst)

    tb.run()

    data = dst.data()
    ntotal = len(data) - L
    nright = 0
    for i in range(ntotal):
        if packet[i + L] == data[i]:
            nright = nright + 1
        # else:
        # print "Error in ", i

    return (ntotal, ntotal - nright)
    def __init__(self, ts, factor, alpha, samp_rate, freqs):
        gr.hier_block2.__init__(
            self, "freq_timing_estimator_hier",
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1),
            gr.io_signaturev(3, 3, [gr.sizeof_char*1, gr.sizeof_float*1, gr.sizeof_float*1]),
        )

        ##################################################
        # Parameters
        ##################################################
        self.ts = ts
        self.factor = factor
        self.alpha = alpha
        self.samp_rate = samp_rate
        self.freqs = freqs
        self.n = n = len(freqs)

        ##################################################
        # Blocks
        ##################################################
        self._filter=[0]*self.n
        self._c2mag2=[0]*self.n
        for i in range(self.n):
          self._filter[i]= filter.freq_xlating_fir_filter_ccc(1, (numpy.conjugate(self.ts[::-1])), self.freqs[i], self.samp_rate)
          self._c2mag2[i] = blocks.complex_to_mag_squared(1)

        self.blocks_max = blocks.max_ff(1)
        self.blocks_peak_detector = blocks.peak_detector_fb(self.factor, self.factor, 0, self.alpha)

        self.blocks_argmax = blocks.argmax_fs(1)
        self.blocks_null_sink = blocks.null_sink(gr.sizeof_short*1)
        self.digital_chunks_to_symbols = digital.chunks_to_symbols_sf((freqs), 1)
        self.blocks_sample_and_hold = blocks.sample_and_hold_ff()

        ##################################################
        # Connections
        ##################################################
        for i in range(self.n):
          self.connect((self, 0), (self._filter[i], 0))
          self.connect((self._filter[i], 0), (self._c2mag2[i], 0))
          self.connect((self._c2mag2[i], 0), (self.blocks_max, i))
          self.connect((self._c2mag2[i], 0), (self.blocks_argmax, i))
        self.connect((self.blocks_max, 0), (self.blocks_peak_detector, 0))
        self.connect((self.blocks_peak_detector, 0), (self, 0))
        self.connect((self.blocks_argmax, 0), (self.blocks_null_sink, 0))
        self.connect((self.blocks_argmax, 1), (self.digital_chunks_to_symbols, 0))
        self.connect((self.digital_chunks_to_symbols, 0), (self.blocks_sample_and_hold, 0))
        self.connect((self.blocks_peak_detector, 0), (self.blocks_sample_and_hold, 1))
        self.connect((self.blocks_sample_and_hold, 0), (self, 1))
        self.connect((self.blocks_max, 0), (self, 2))
Exemple #9
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, N0, seed):
    tb = gr.top_block()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1,
                                gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi, 0)  # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    metrics_in = trellis.metrics_f(
        fi.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for innner Viterbi
    gnd = blocks.vector_source_f([0], True)
    siso_in = trellis.siso_f(
        fi, K, 0, -1, True, False, trellis.TRELLIS_MIN_SUM
    )  # Put -1 if the Initial/Final states are not set.
    deinter = trellis.permutation(interleaver.K(), interleaver.DEINTER(),
                                  fi.I(), gr.sizeof_float)
    va_out = trellis.viterbi_s(
        fo, K, 0, -1)  # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, metrics_in)
    tb.connect(gnd, (siso_in, 0))
    tb.connect(metrics_in, (siso_in, 1))
    tb.connect(siso_in, deinter, va_out, fsmi2s, dst)

    tb.run()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Exemple #10
0
def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed):
    tb = gr.top_block()

    # TX
    numpy.random.seed(-seed)
    packet = numpy.random.randint(0, 2, Kb)  # create Kb random bits
    packet[Kb - 10:Kb] = 0
    packet[0:Kb] = 0
    src = blocks.vector_source_s(packet.tolist(), False)
    b2s = blocks.unpacked_to_packed_ss(1,
                                       gr.GR_MSB_FIRST)  # pack bits in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f, 0)  # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2),
                                  long(seed))

    # RX
    va = trellis.viterbi_combined_fs(
        f, K, 0, 0, dimensionality, constellation, digital.TRELLIS_EUCLIDEAN
    )  # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    s2b = blocks.packed_to_unpacked_ss(
        1, gr.GR_MSB_FIRST)  # unpack shorts to bits
    dst = blocks.vector_sink_s()

    tb.connect(src, b2s, s2fsmi, enc, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, va, fsmi2s, s2b, dst)

    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    if len(dst.data()) != len(packet):
        print "Error: not enough data:", len(dst.data()), len(packet)
    ntotal = len(packet)
    nwrong = sum(abs(packet - numpy.array(dst.data())))
    return (ntotal, nwrong, abs(packet - numpy.array(dst.data())))
    def test_sf_callback(self):
	constA = [-3, -1, 1, 3]
        constB = [12, -12, 6, -6]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result=(12, -12, 6, -6, -6, 6, -12, 12)

	src = blocks.vector_source_s(src_data, False, 1, "")
        op = digital.chunks_to_symbols_sf(constA)
        op.set_symbol_table(constB)
        dst = blocks.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()
        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
    def test_sf_006(self):
        const = [-3, -1, 1, 3]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = [-3, -1, 1, 3, 3, 1, -1, -3]

        src = blocks.vector_source_s(src_data)
        op = digital.chunks_to_symbols_sf(const)

        dst = blocks.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
    def test_sf_callback(self):
        constA = [-3, -1, 1, 3]
        constB = [12, -12, 6, -6]
        src_data = [0, 1, 2, 3, 3, 2, 1, 0]
        expected_result = [12, -12, 6, -6, -6, 6, -12, 12]

        src = blocks.vector_source_s(src_data, False, 1, [])
        op = digital.chunks_to_symbols_sf(constA)
        op.set_symbol_table(constB)
        dst = blocks.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()
        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
    def test_sf_006(self):
        const = [-3, -1, 1, 3]
        src_data = (0, 1, 2, 3, 3, 2, 1, 0)
        expected_result = (-3, -1, 1, 3,
                            3, 1, -1, -3)

        src = blocks.vector_source_s(src_data)
        op = digital.chunks_to_symbols_sf(const)

        dst = blocks.vector_sink_f()
        self.tb.connect(src, op)
        self.tb.connect(op, dst)
        self.tb.run()

        actual_result = dst.data()
        self.assertEqual(expected_result, actual_result)
Exemple #15
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    #src = blocks.vector_source_s([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],False)
    enc = trellis.pccc_encoder_ss(fo, 0, fi, 0, interleaver, K)
    code = blocks.vector_sink_s()
    mod = digital.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    metrics_in = trellis.metrics_f(
        fi.O() * fo.O(), dimensionality, constellation,
        digital.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for innner SISO
    scale = blocks.multiply_const_ff(1.0 / N0)
    dec = trellis.pccc_decoder_s(fo, 0, -1, fi, 0, -1, interleaver, K, IT,
                                 trellis.TRELLIS_MIN_SUM)

    fsmi2s = blocks.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc, mod)
    #tb.connect (src,enc,mod)
    #tb.connect(enc,code)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, metrics_in, scale, dec, fsmi2s, dst)

    tb.run()

    #print code.data()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Exemple #16
0
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed,P):
    tb = gr.top_block ()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short,Kb/16*P) # packet size in shorts
    s2fsmi=blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    s2p = blocks.stream_to_streams(gr.sizeof_short,P) # serial to parallel
    enc = trellis.encoder_ss(f,0) # initiali state = 0
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add=[]
    noise=[]
    for i in range(P):
        add.append(blocks.add_ff())
        noise.append(analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed))

    # RX
    metrics = trellis.metrics_f(f.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
    p2s = blocks.streams_to_stream(gr.sizeof_short,P) # parallel to serial
    fsmi2s=blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect (src,src_head,s2fsmi,s2p)
    for i in range(P):
        tb.connect ((s2p,i),(enc,i),(mod,i))
        tb.connect ((mod,i),(add[i],0))
        tb.connect (noise[i],(add[i],1))
        tb.connect (add[i],(metrics,i))
        tb.connect ((metrics,i),(va,i),(p2s,i))
    tb.connect (p2s,fsmi2s,dst)


    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state.
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()

    return (ntotal,ntotal-nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, channel, modulation,
             dimensionality, tot_constellation, Es, N0, IT, seed):
    tb = gr.top_block()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0] * (K)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2**bitspersymbol - 1)  # random symbols
    src = blocks.vector_source_s(packet, False)
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1,
                                gr.sizeof_short)
    mod = digital.chunks_to_symbols_sf(modulation[1], modulation[0])

    # CHANNEL
    isi = filter.fir_filter_fff(1, channel)
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    (head, tail) = make_rx(tb, fo, fi, dimensionality, tot_constellation, K,
                           interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM)
    dst = blocks.vector_sink_s()

    tb.connect(src, enc_out, inter, mod)
    tb.connect(mod, isi, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, head)
    tb.connect(tail, dst)

    tb.run()

    data = dst.data()
    ntotal = len(data)
    nright = 0
    for i in range(ntotal):
        if packet[i] == data[i]:
            nright = nright + 1
        #else:
        #print "Error in ", i

    return (ntotal, ntotal - nright)
Exemple #18
0
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
    tb = gr.top_block ()

    # TX
    numpy.random.seed(-seed)
    packet = numpy.random.randint(0,2,Kb) # create Kb random bits
    packet[Kb-10:Kb]=0
    packet[0:Kb]=0
    src = blocks.vector_source_s(packet.tolist(),False)
    b2s = blocks.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0 / 2),int(seed))

    # RX
    va = trellis.viterbi_combined_fs(f,K,0,0,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    s2b = blocks.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
    dst = blocks.vector_sink_s();


    tb.connect (src,b2s,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,va,fsmi2s,s2b,dst)


    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    if len(dst.data()) != len(packet):
        print("Error: not enough data:", len(dst.data()), len(packet))
    ntotal=len(packet)
    nwrong = sum(abs(packet-numpy.array(dst.data())));
    return (ntotal,nwrong,abs(packet-numpy.array(dst.data())))
Exemple #19
0
def run_test(f, Kb, bitspersymbol, K, dimensionality, tot_constellation, N0,
             seed):
    tb = gr.top_block()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f, 0)  # initial state = 0
    # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the FSM)
    mod = digital.chunks_to_symbols_sf(tot_constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    metrics = trellis.metrics_f(
        f.O(), dimensionality, tot_constellation, digital.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(
        f, K, 0, -1)  # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, metrics)
    tb.connect(metrics, va, fsmi2s, dst)

    tb.run()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    #print ntotal,nright,runlength

    return (ntotal, ntotal - nright)
Exemple #20
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1,
                                gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi, 0)  # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    (head, tail) = make_rx(tb, fo, fi, dimensionality, constellation, K,
                           interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM)
    #(head,tail) = make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_SUM_PRODUCT)
    fsmi2s = blocks.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, head)
    tb.connect(tail, fsmi2s, dst)

    tb.run()

    #print enc_out.ST(), enc_in.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Exemple #21
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc = trellis.sccc_encoder_ss(fo, 0, fi, 0, interleaver, K)
    mod = digital.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    dec = trellis.sccc_decoder_combined_fs(fo, 0, -1, fi, 0, -1, interleaver,
                                           K, IT, trellis.TRELLIS_MIN_SUM,
                                           dimensionality, constellation,
                                           digital.TRELLIS_EUCLIDEAN, 1.0)
    fsmi2s = blocks.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
    tb.connect(src, src_head, s2fsmi, enc, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    #tb.connect (add,head)
    #tb.connect (tail,fsmi2s,dst)
    tb.connect(add, dec, fsmi2s, dst)

    tb.run()

    #print enc_out.ST(), enc_in.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,Es,N0,IT,seed):
    tb = gr.top_block ()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0]*(K)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
    src = blocks.vector_source_s(packet,False)
    enc_out = trellis.encoder_ss(fo,0) # initial state = 0
    inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
    mod = digital.chunks_to_symbols_sf(modulation[1],modulation[0])

    # CHANNEL
    isi = filter.fir_filter_fff(1,channel)
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM)
    dst = blocks.vector_sink_s();

    tb.connect (src,enc_out,inter,mod)
    tb.connect (mod,isi,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,head)
    tb.connect (tail,dst)

    tb.run()

    data = dst.data()
    ntotal = len(data)
    nright=0
    for i in range(ntotal):
        if packet[i]==data[i]:
            nright=nright+1
        #else:
            #print "Error in ", i

    return (ntotal,ntotal-nright)
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
    tb = gr.top_block ()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)


    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)


    # RX
    va = trellis.viterbi_combined_fs(f,K,0,-1,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s();


    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,va,fsmi2s,dst)


    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()

    return (ntotal,ntotal-nright)
Exemple #24
0
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
    tb = gr.top_block ()


    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
    #src = blocks.vector_source_s([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],False)
    enc = trellis.pccc_encoder_ss(fo,0,fi,0,interleaver,K)
    code = blocks.vector_sink_s()
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    metrics_in = trellis.metrics_f(fi.O()*fo.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner SISO
    scale = blocks.multiply_const_ff(1.0/N0)
    dec = trellis.pccc_decoder_s(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM)

    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect (src,src_head,s2fsmi,enc,mod)
    #tb.connect (src,enc,mod)
    #tb.connect(enc,code)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics_in,scale,dec,fsmi2s,dst)

    tb.run()

    #print code.data()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    return (ntotal,ntotal-nright)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, tot_constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the iouter FSM input cardinality
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi, 0)  # initial state = 0
    # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the innner FSM)
    mod = digital.chunks_to_symbols_sf(tot_constellation, dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    (head, tail) = make_rx(
        tb, fo, fi, dimensionality, tot_constellation, K, interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM
    )
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, head)
    tb.connect(tail, fsmi2s, dst)

    tb.run()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    # print ntotal,nright,runlength

    return (ntotal, ntotal - nright)
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
    tb = gr.top_block ()

    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head(gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)


    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)


    # RX
    va = trellis.viterbi_combined_fs(f,K,0,-1,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s();


    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,va,fsmi2s,dst)


    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()

    return (ntotal,ntotal-nright)
Exemple #27
0
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
    tb = gr.top_block ()


    # TX
    src = blocks.lfsr_32k_source_s()
    src_head = blocks.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = blocks.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc_out = trellis.encoder_ss(fo,0) # initial state = 0
    inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi,0) # initial state = 0
    mod = digital.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = blocks.add_ff()
    noise = analog.noise_source_f(analog.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    metrics_in = trellis.metrics_f(fi.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner Viterbi
    gnd = blocks.vector_source_f([0],True);
    siso_in = trellis.siso_f(fi,K,0,-1,True,False,trellis.TRELLIS_MIN_SUM) # Put -1 if the Initial/Final states are not set.
    deinter = trellis.permutation(interleaver.K(),interleaver.DEINTER(),fi.I(),gr.sizeof_float)
    va_out = trellis.viterbi_s(fo,K,0,-1) # Put -1 if the Initial/Final states are not set.
    fsmi2s = blocks.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = blocks.check_lfsr_32k_s()

    tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics_in)
    tb.connect (gnd,(siso_in,0))
    tb.connect (metrics_in,(siso_in,1))
    tb.connect (siso_in,deinter,va_out,fsmi2s,dst)

    tb.run()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    return (ntotal,ntotal-nright)
    def __init__(self, seq1, seq2, factor, alpha, samp_rate, freqs):
        """
        Description:

        This block is functionally equivalent to the frequency_timing_estimator block, except from the fact that each filter is matched to a sequence that can be written as the kronecker product of seq1 and seq2.

        Args:
	     seq1: sequence1 of kronecker filter, which is the given training sequence. 
	     seq2: sequence2 of kronecker filter, which is the pulse for each training symbol.
             factor: the rise and fall factors in peak detector, which is the factor determining when a peak has started and ended.  In the peak detector, an average of the signal is calculated. When the value of the signal goes over factor*average, we start looking for a peak. When the value of the signal goes below factor*average, we stop looking for a peak. factor takes values in (0,1). 
             alpha: the smoothing factor of a moving average filter used in the peak detector takeng values in (0,1).
             samp_rate: the sample rate of the system, which is used in the kronecker_filter.
             freqs: the vector of center frequencies for each matched filter. Note that for a training sequence of length Nt, each matched filter can recover a sequence with normalized frequency offset ~ 1/(2Nt).
        """

        gr.hier_block2.__init__(self,
            "freq_timing_estimator",
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1),
            gr.io_signaturev(3, 3, [gr.sizeof_char*1, gr.sizeof_float*1, gr.sizeof_float*1]),
        )

        ##################################################
        # Parameters
        ##################################################
        self.seq1 = seq1
        self.seq2 = seq2
        self.factor = factor
        self.alpha = alpha
        self.samp_rate = samp_rate
        self.freqs = freqs
        self.n = n = len(freqs)

        ##################################################
        # Blocks
        ##################################################
        self._filter=[0]*self.n
        self._c2mag2=[0]*self.n
        for i in range(self.n):
          self._filter[i]= cdma.kronecker_filter(seq1,seq2,samp_rate,self.freqs[i])
          #self._filter[i]= filter.freq_xlating_fir_filter_ccc(1, (numpy.conjugate(self.ts[::-1])), self.freqs[i], self.samp_rate)
          self._c2mag2[i] = blocks.complex_to_mag_squared(1)

        self.blocks_max = blocks.max_ff(1)
        self.blocks_peak_detector = blocks.peak_detector_fb(self.factor, self.factor, 0, self.alpha)

        self.blocks_argmax = blocks.argmax_fs(1)
        self.blocks_null_sink = blocks.null_sink(gr.sizeof_short*1)
        self.digital_chunks_to_symbols = digital.chunks_to_symbols_sf((freqs), 1)
        self.blocks_sample_and_hold = blocks.sample_and_hold_ff()

        ##################################################
        # Connections
        ##################################################
        for i in range(self.n):
          self.connect((self, 0), (self._filter[i], 0))
          self.connect((self._filter[i], 0), (self._c2mag2[i], 0))
          self.connect((self._c2mag2[i], 0), (self.blocks_max, i))
          self.connect((self._c2mag2[i], 0), (self.blocks_argmax, i))
        self.connect((self.blocks_max, 0), (self.blocks_peak_detector, 0))
        self.connect((self.blocks_peak_detector, 0), (self, 0))
        self.connect((self.blocks_argmax, 0), (self.blocks_null_sink, 0))
        self.connect((self.blocks_argmax, 1), (self.digital_chunks_to_symbols, 0))
        self.connect((self.digital_chunks_to_symbols, 0), (self.blocks_sample_and_hold, 0))
        self.connect((self.blocks_peak_detector, 0), (self.blocks_sample_and_hold, 1))
        self.connect((self.blocks_sample_and_hold, 0), (self, 1))
        self.connect((self.blocks_max, 0), (self, 2))
    def __init__(self, seq1, seq2, factor, lookahead, alpha, freqs):
        """
        Description:
frequency timing estimator class does frequency/timing acquisition from scratch.It uses a bank of parallel correlators at each specified frequency. It then takes the max abs value of all these and passes it through a peak detector to find timing.


        Args:
	     seq1: sequence1 of kronecker filter, which is the given training sequence. 
	     seq2: sequence2 of kronecker filter, which is the pulse for each training symbol.
             factor: the rise and fall factors in peak detector, which is the factor determining when a peak has started and ended.  In the peak detector, an average of the signal is calculated. When the value of the signal goes over factor*average, we start looking for a peak. When the value of the signal goes below factor*average, we stop looking for a peak.
             alpha: the smoothing factor of a moving average filter used in the peak detector taking values in (0,1).
             freqs: the vector of normalized center frequencies for each matched filter. Note that for a training sequence of length Nt, each matched filter can recover a sequence with normalized frequency offset ~ 1/(2Nt).
        """

        gr.hier_block2.__init__(self,
            "freq_timing_estimator",
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1),
            gr.io_signaturev(3, 3, [gr.sizeof_char*1, gr.sizeof_float*1, gr.sizeof_float*1]),
        )

        ##################################################
        # Parameters
        ##################################################
        self.seq1 = seq1
        self.seq2 = seq2
        self.factor = factor
        self.lookahead = lookahead
        self.alpha = alpha
        self.freqs = freqs
        self.n = n = len(freqs)
        self.on = 1

        ##################################################
        # Blocks
        ##################################################
        self._filter=[0]*self.n
        self._c2mag2=[0]*self.n
        for i in range(self.n):
          #self._filter[i]= cdma.kronecker_filter(seq1,seq2,1,self.freqs[i])
          #self._filter[i]= filter.freq_xlating_fir_filter_ccc(1, numpy.kron(seq1,seq2), self.freqs[i], 1)
          self._filter[i]= filter.freq_xlating_fft_filter_ccc(1, numpy.kron(seq1,seq2), self.freqs[i], 1)
          self._c2mag2[i] = blocks.complex_to_mag_squared(1)

        self.blocks_max = blocks.max_ff(1)
        self.blocks_peak_detector = cdma.switched_peak_detector_fb(self.factor, self.factor, self.lookahead, self.alpha, self.on)

        self.blocks_argmax = blocks.argmax_fs(1)
        self.blocks_null_sink = blocks.null_sink(gr.sizeof_short*1)
        self.digital_chunks_to_symbols = digital.chunks_to_symbols_sf((freqs), 1)
        self.blocks_sample_and_hold = blocks.sample_and_hold_ff()

        ##################################################
        # Connections
        ##################################################
        for i in range(self.n):
          self.connect((self, 0), (self._filter[i], 0))
          self.connect((self._filter[i], 0), (self._c2mag2[i], 0))
          self.connect((self._c2mag2[i], 0), (self.blocks_max, i))
          self.connect((self._c2mag2[i], 0), (self.blocks_argmax, i))
        self.connect((self.blocks_max, 0), (self.blocks_peak_detector, 0))
        self.connect((self.blocks_peak_detector, 0), (self, 0))
        self.connect((self.blocks_argmax, 0), (self.blocks_null_sink, 0))
        self.connect((self.blocks_argmax, 1), (self.digital_chunks_to_symbols, 0))
        self.connect((self.digital_chunks_to_symbols, 0), (self.blocks_sample_and_hold, 0))
        self.connect((self.blocks_peak_detector, 0), (self.blocks_sample_and_hold, 1))
        self.connect((self.blocks_sample_and_hold, 0), (self, 1))
        self.connect((self.blocks_max, 0), (self, 2))
    def __init__(self, ts, factor, alpha, samp_rate, freqs):
        """
	Description:
        This block is designed to perform frequency and timing acquisition for a known training sequence in the presense of frequency and timing offset and noise. Its input is a complex stream.  It has three outputs: 
 1)  a stream of flags (bytes) indicating the begining of the training sequence (to be used from subsequent blocks to "chop" the incoming stream,
 2)  a stream with the current acquired frequency offset, and
 3)  a stream with the current acquired peak of the matched filter 

	Internally, it consists of a user defined number of parallel matched filters (as many as the size of the freqs vector), each consistng of a frequency Xlating FIR filter with sample rate samp_rate, filter taps matched to the training sequence ts, and center frequency freqs[i]. The filter outputs are magnitude squared and passed through a max block and then through a peak detector. 
 
	Args:
	     ts: the training sequence. For example, in DSSS system, it's the chip-based spread training sequence. 
	     factor: the rise and fall factors in peak detector, which is the factor determining when a peak has started and ended.  In the peak detector, an average of the signal is calculated. When the value of the signal goes over factor*average, we start looking for a peak. When the value of the signal goes below factor*average, we stop looking for a peak. factor takes values in (0,1). 
	     alpha: the smoothing factor of a moving average filter used in the peak detector takeng values in (0,1).
	     samp_rate: the sample rate of the system, which is used in the freq_xlating_fir_filter.
	     freqs: the vector of center frequencies for each matched filter. Note that for a training sequence of length Nt, each matched filter can recover a sequence with normalized frequency offset ~ 1/(2Nt).
        """

        gr.hier_block2.__init__(
            self, "freq_timing_estimator",
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1),
            gr.io_signaturev(3, 3, [gr.sizeof_char*1, gr.sizeof_float*1, gr.sizeof_float*1]),
        )

        ##################################################
        # Parameters
        ##################################################
        self.ts = ts
        self.factor = factor
        self.alpha = alpha
        self.samp_rate = samp_rate
        self.freqs = freqs
        self.n = n = len(freqs)
        ##################################################
        # Blocks
        ##################################################
        self._filter=[0]*self.n
        self._c2mag2=[0]*self.n
        for i in range(self.n):
          self._filter[i]= filter.freq_xlating_fir_filter_ccc(1, (numpy.conjugate(self.ts[::-1])), self.freqs[i], self.samp_rate)
          self._c2mag2[i] = blocks.complex_to_mag_squared(1)

        self.blocks_max = blocks.max_ff(1)
        self.blocks_peak_detector = blocks.peak_detector_fb(self.factor, self.factor, 0, self.alpha)

        self.blocks_argmax = blocks.argmax_fs(1)
        self.blocks_null_sink = blocks.null_sink(gr.sizeof_short*1)
        self.digital_chunks_to_symbols = digital.chunks_to_symbols_sf((freqs), 1)
        self.blocks_sample_and_hold = blocks.sample_and_hold_ff()

        ##################################################
        # Connections
        ##################################################
        for i in range(self.n):
          self.connect((self, 0), (self._filter[i], 0))
          self.connect((self._filter[i], 0), (self._c2mag2[i], 0))
          self.connect((self._c2mag2[i], 0), (self.blocks_max, i))
          self.connect((self._c2mag2[i], 0), (self.blocks_argmax, i))
        self.connect((self.blocks_max, 0), (self.blocks_peak_detector, 0))
        self.connect((self.blocks_peak_detector, 0), (self, 0))
        self.connect((self.blocks_argmax, 0), (self.blocks_null_sink, 0))
        self.connect((self.blocks_argmax, 1), (self.digital_chunks_to_symbols, 0))
        self.connect((self.digital_chunks_to_symbols, 0), (self.blocks_sample_and_hold, 0))
        self.connect((self.blocks_peak_detector, 0), (self.blocks_sample_and_hold, 1))
        self.connect((self.blocks_sample_and_hold, 0), (self, 1))
        self.connect((self.blocks_max, 0), (self, 2))
    def __init__(self, seq1, seq2, factor, alpha, freqs, debug_onoff, debug_port, prefix):
        """
        Description:
frequency timing estimator class does frequency/timing acquisition from scratch.It uses a bank of parallel correlators at each specified frequency. It then takes the max abs value of all these and passes it through a peak detector to find timing.


        Args:
	     seq1: sequence1 of kronecker filter, which is the given training sequence. 
	     seq2: sequence2 of kronecker filter, which is the pulse for each training symbol.
             factor: the rise and fall factors in peak detector, which is the factor determining when a peak has started and ended.  In the peak detector, an average of the signal is calculated. When the value of the signal goes over factor*average, we start looking for a peak. When the value of the signal goes below factor*average, we stop looking for a peak.
             alpha: the smoothing factor of a moving average filter used in the peak detector taking values in (0,1).
             freqs: the vector of normalized center frequencies for each matched filter. Note that for a training sequence of length Nt, each matched filter can recover a sequence with normalized frequency offset ~ 1/(2Nt).
        """

        gr.hier_block2.__init__(self,
            "freq_timing_estimator",
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1),
            gr.io_signaturev(3, 3, [gr.sizeof_char*1, gr.sizeof_float*1, gr.sizeof_float*1]),
        )

        ##################################################
        # Parameters
        ##################################################
        self.seq1 = seq1
        self.seq2 = seq2
        self.factor = factor
        self.alpha = alpha
        self.freqs = freqs
        self.n = n = len(freqs)
        self.on = 1
        self.debug_onoff = debug_onoff # 1: dump ports info to file 0: no debug output
        self.debug_port = debug_port # 0-n_filt-1 is the output of each filter branck; n_filter is the output of maximum
        self.prefix = prefix

        ##################################################
        # Blocks
        ##################################################
        self._filter=[0]*self.n
        self._c2mag2=[0]*self.n
        for i in range(self.n):
          #self._filter[i]= cdma.kronecker_filter(seq1,seq2,1,self.freqs[i])
          #self._filter[i]= filter.freq_xlating_fir_filter_ccc(1, numpy.kron(seq1,seq2), self.freqs[i], 1)
          self._filter[i]= filter.freq_xlating_fft_filter_ccc(1, numpy.kron(seq1,seq2), self.freqs[i], 1)
          self._c2mag2[i] = blocks.complex_to_mag_squared(1)

        self.blocks_max = blocks.max_ff(1)
        self.blocks_peak_detector = cdma.switched_peak_detector_fb(self.factor, self.factor, 0, self.alpha, self.on)

        self.blocks_argmax = blocks.argmax_fs(1)
        self.blocks_null_sink = blocks.null_sink(gr.sizeof_short*1)
        self.digital_chunks_to_symbols = digital.chunks_to_symbols_sf((freqs), 1)
        self.blocks_sample_and_hold = blocks.sample_and_hold_ff()
	    
        if self.debug_onoff == True:
            num_of_file_sinks = len(self.debug_port)
            self._filesink = [0]*num_of_file_sinks
            for i in range(num_of_file_sinks):
                if self.debug_port[i] == self.n:
                    filename = prefix+"max.dat"
                    
                else:
                    filename = prefix+"filter"+str(i)+".dat"
                print filename
                self._filesink[i] = blocks.file_sink(gr.sizeof_float*1, filename, False)
                self._filesink[i].set_unbuffered(False)

    	# this is the block for bundling the outputs of each branch of filters and the input of peak detector	
        ##################################################
        # Connections
        ##################################################
        for i in range(self.n):
          self.connect((self, 0), (self._filter[i], 0))
          self.connect((self._filter[i], 0), (self._c2mag2[i], 0))
          self.connect((self._c2mag2[i], 0), (self.blocks_max, i))
          self.connect((self._c2mag2[i], 0), (self.blocks_argmax, i))
        self.connect((self.blocks_max, 0), (self.blocks_peak_detector, 0))
        self.connect((self.blocks_peak_detector, 0), (self, 0))
        self.connect((self.blocks_argmax, 0), (self.blocks_null_sink, 0))
        self.connect((self.blocks_argmax, 1), (self.digital_chunks_to_symbols, 0))
        self.connect((self.digital_chunks_to_symbols, 0), (self.blocks_sample_and_hold, 0))
        self.connect((self.blocks_peak_detector, 0), (self.blocks_sample_and_hold, 1))
        self.connect((self.blocks_sample_and_hold, 0), (self, 1))
        self.connect((self.blocks_max, 0), (self, 2))
        if self.debug_onoff == True:
            for i in range(num_of_file_sinks):
                port_index = self.debug_port[i]
                if port_index == self.n:
                    self.connect((self.blocks_max, 0), (self._filesink[i], 0))
                else:
                    self.connect((self._c2mag2[port_index], 0), (self._filesink[i], 0))
    def __init__(self, seq1, seq2, factor, alpha, freqs):
        """
        Description:
frequency timing estimator class does frequency/timing acquisition from scratch.It uses a bank of parallel correlators at each specified frequency. It then takes the max abs value of all these and passes it through a peak detector to find timing.


        Args:
	     seq1: sequence1 of kronecker filter, which is the given training sequence. 
	     seq2: sequence2 of kronecker filter, which is the pulse for each training symbol.
             factor: the rise and fall factors in peak detector, which is the factor determining when a peak has started and ended.  In the peak detector, an average of the signal is calculated. When the value of the signal goes over factor*average, we start looking for a peak. When the value of the signal goes below factor*average, we stop looking for a peak.
             alpha: the smoothing factor of a moving average filter used in the peak detector taking values in (0,1).
             freqs: the vector of normalized center frequencies for each matched filter. Note that for a training sequence of length Nt, each matched filter can recover a sequence with normalized frequency offset ~ 1/(2Nt).
        """

        gr.hier_block2.__init__(
            self,
            "freq_timing_estimator",
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signaturev(
                3, 3,
                [gr.sizeof_char * 1, gr.sizeof_float * 1, gr.sizeof_float * 1
                 ]),
        )

        ##################################################
        # Parameters
        ##################################################
        self.seq1 = seq1
        self.seq2 = seq2
        self.factor = factor
        self.alpha = alpha
        self.freqs = freqs
        self.n = n = len(freqs)
        self.on = 1

        ##################################################
        # Blocks
        ##################################################
        self._filter = [0] * self.n
        self._c2mag2 = [0] * self.n
        for i in range(self.n):
            #self._filter[i]= cdma.kronecker_filter(seq1,seq2,1,self.freqs[i])
            #self._filter[i]= filter.freq_xlating_fir_filter_ccc(1, numpy.kron(seq1,seq2), self.freqs[i], 1)
            self._filter[i] = filter.freq_xlating_fft_filter_ccc(
                1, numpy.kron(seq1, seq2), self.freqs[i], 1)
            self._c2mag2[i] = blocks.complex_to_mag_squared(1)

        self.blocks_max = blocks.max_ff(1)
        self.blocks_peak_detector = cdma.switched_peak_detector_fb(
            self.factor, self.factor, 0, self.alpha, self.on)

        self.blocks_argmax = blocks.argmax_fs(1)
        self.blocks_null_sink = blocks.null_sink(gr.sizeof_short * 1)
        self.digital_chunks_to_symbols = digital.chunks_to_symbols_sf((freqs),
                                                                      1)
        self.blocks_sample_and_hold = blocks.sample_and_hold_ff()

        ##################################################
        # Connections
        ##################################################
        for i in range(self.n):
            self.connect((self, 0), (self._filter[i], 0))
            self.connect((self._filter[i], 0), (self._c2mag2[i], 0))
            self.connect((self._c2mag2[i], 0), (self.blocks_max, i))
            self.connect((self._c2mag2[i], 0), (self.blocks_argmax, i))
        self.connect((self.blocks_max, 0), (self.blocks_peak_detector, 0))
        self.connect((self.blocks_peak_detector, 0), (self, 0))
        self.connect((self.blocks_argmax, 0), (self.blocks_null_sink, 0))
        self.connect((self.blocks_argmax, 1),
                     (self.digital_chunks_to_symbols, 0))
        self.connect((self.digital_chunks_to_symbols, 0),
                     (self.blocks_sample_and_hold, 0))
        self.connect((self.blocks_peak_detector, 0),
                     (self.blocks_sample_and_hold, 1))
        self.connect((self.blocks_sample_and_hold, 0), (self, 1))
        self.connect((self.blocks_max, 0), (self, 2))