def __init__(self):
        gr.top_block.__init__(self, "Affinity Set Test")

        ##################################################
	# Variables
	##################################################
	self.samp_rate = samp_rate = 32000

	##################################################
	# Blocks
	##################################################
        vec_len = 1
	self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*vec_len, samp_rate)
	self.blocks_null_source_0 = blocks.null_source(gr.sizeof_gr_complex*vec_len)
	self.blocks_null_sink_0 = blocks.null_sink(gr.sizeof_gr_complex*vec_len)
	self.filter_filt_0 = filter.fir_filter_ccc(1, 40000*[0.2+0.3j,])
	self.filter_filt_1 = filter.fir_filter_ccc(1, 40000*[0.2+0.3j,])

	self.filter_filt_0.set_processor_affinity([0,])
	self.filter_filt_1.set_processor_affinity([0,1])

	##################################################
	# Connections
	##################################################
	self.connect((self.blocks_null_source_0, 0), (self.blocks_throttle_0, 0))
	self.connect((self.blocks_throttle_0, 0), (self.filter_filt_0, 0))
	self.connect((self.filter_filt_0, 0), (self.filter_filt_1, 0))
	self.connect((self.filter_filt_1, 0), (self.blocks_null_sink_0, 0))
Exemple #2
0
    def __init__(self):
        gr.top_block.__init__(self, "Affinity Set Test")

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 32000

        ##################################################
        # Blocks
        ##################################################
        vec_len = 1
        self.blocks_throttle_0 = blocks.throttle(
            gr.sizeof_gr_complex * vec_len, samp_rate)
        self.blocks_null_source_0 = blocks.null_source(
            gr.sizeof_gr_complex * vec_len)
        self.blocks_null_sink_0 = blocks.null_sink(
            gr.sizeof_gr_complex * vec_len)
        self.filter_filt_0 = filter.fir_filter_ccc(1, 40000 * [0.2 + 0.3j, ])
        self.filter_filt_1 = filter.fir_filter_ccc(1, 40000 * [0.2 + 0.3j, ])

        self.filter_filt_0.set_processor_affinity([0, ])
        self.filter_filt_1.set_processor_affinity([0, 1])

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_null_source_0, 0),
                     (self.blocks_throttle_0, 0))
        self.connect((self.blocks_throttle_0, 0), (self.filter_filt_0, 0))
        self.connect((self.filter_filt_0, 0), (self.filter_filt_1, 0))
        self.connect((self.filter_filt_1, 0), (self.blocks_null_sink_0, 0))
Exemple #3
0
	def __init__(self, source_data, sampling_rate, carrier_hz, symbol_rate, deviation, access_code):
		super(FSKDemodulator, self).__init__()

		self._decoded = {}

		self._carrier_hz = carrier_hz
		self._deviation = deviation
		self._access_code = access_code

		samp_rate = sampling_rate
		#symbol_rate = 9920
		self.samples_per_symbol = float(samp_rate) / symbol_rate

		omega = self.samples_per_symbol * 1.0
		mu = 0.0
		gain_mu = 0.2
		gain_omega = 0.25 * gain_mu * gain_mu
		omega_relative_limit = 0.001

		tap_count = int(math.floor(self.samples_per_symbol))

		hz_n = (carrier_hz - deviation)
		taps_n = numpy.exp(numpy.arange(tap_count, dtype=numpy.float32) * 2.0j * numpy.pi * hz_n / samp_rate)
		hz_p = (carrier_hz + deviation)
		taps_p = numpy.exp(numpy.arange(tap_count, dtype=numpy.float32) * 2.0j * numpy.pi * hz_p / samp_rate)

		#source = blocks.file_source(gr.sizeof_gr_complex*1, filepath_in, False)
		# Concatenate data to compensate for correlate_access_code_bb latency
		source_data_padding_count = int(math.ceil(self.samples_per_symbol * 64))
		source_data = numpy.concatenate((source_data, numpy.zeros((source_data_padding_count,), dtype=numpy.complex64)))
		source = NumpySource(source_data)

		filter_n = filter.fir_filter_ccc(1, taps_n.tolist())
		self.connect(source, filter_n)
		filter_p = filter.fir_filter_ccc(1, taps_p.tolist())
		self.connect(source, filter_p)

		mag_n = blocks.complex_to_mag(1)
		self.connect(filter_n, mag_n)
		mag_p = blocks.complex_to_mag(1)
		self.connect(filter_p, mag_p)

		sub_pn = blocks.sub_ff()
		self.connect(mag_p, (sub_pn, 0))
		self.connect(mag_n, (sub_pn, 1))

		clock_recovery = digital.clock_recovery_mm_ff(omega, gain_omega, mu, gain_mu, omega_relative_limit)
		self.connect(sub_pn, clock_recovery)

		slicer = digital.binary_slicer_fb()
		self.connect(clock_recovery, slicer)

		access_code_correlator = digital.correlate_access_code_bb(access_code, 0)
		self.connect(slicer, access_code_correlator)

		self.packetizer = Packetizer()
		self.connect(access_code_correlator, self.packetizer)
Exemple #4
0
	def __init__(self, source_data, sampling_rate, carrier_hz, symbol_rate, deviation, access_code):
		super(FSKDemodulator, self).__init__()

		self._decoded = {}

		self._carrier_hz = carrier_hz
		self._deviation = deviation
		self._access_code = access_code

		samp_rate = sampling_rate
		#symbol_rate = 9920
		self.samples_per_symbol = float(samp_rate) / symbol_rate

		omega = self.samples_per_symbol * 1.0
		mu = 0.0
		gain_mu = 0.2
		gain_omega = 0.25 * gain_mu * gain_mu
		omega_relative_limit = 0.001

		tap_count = int(math.floor(self.samples_per_symbol))

		hz_n = (carrier_hz - deviation)
		taps_n = numpy.exp(numpy.arange(tap_count, dtype=numpy.float32) * 2.0j * numpy.pi * hz_n / samp_rate)
		hz_p = (carrier_hz + deviation)
		taps_p = numpy.exp(numpy.arange(tap_count, dtype=numpy.float32) * 2.0j * numpy.pi * hz_p / samp_rate)

		#source = blocks.file_source(gr.sizeof_gr_complex*1, filepath_in, False)
		# Concatenate data to compensate for correlate_access_code_bb latency
		source_data_padding_count = int(math.ceil(self.samples_per_symbol * 64))
		source_data = numpy.concatenate((source_data, numpy.zeros((source_data_padding_count,), dtype=numpy.complex64)))
		source = NumpySource(source_data)

		filter_n = filter.fir_filter_ccc(1, taps_n.tolist())
		self.connect(source, filter_n)
		filter_p = filter.fir_filter_ccc(1, taps_p.tolist())
		self.connect(source, filter_p)

		mag_n = blocks.complex_to_mag(1)
		self.connect(filter_n, mag_n)
		mag_p = blocks.complex_to_mag(1)
		self.connect(filter_p, mag_p)

		sub_pn = blocks.sub_ff()
		self.connect(mag_p, (sub_pn, 0))
		self.connect(mag_n, (sub_pn, 1))

		clock_recovery = digital.clock_recovery_mm_ff(omega, gain_omega, mu, gain_mu, omega_relative_limit)
		self.connect(sub_pn, clock_recovery)

		slicer = digital.binary_slicer_fb()
		self.connect(clock_recovery, slicer)

		access_code_correlator = digital.correlate_access_code_bb(access_code, 0)
		self.connect(slicer, access_code_correlator)

		self.packetizer = Packetizer()
		self.connect(access_code_correlator, self.packetizer)
    def __init__(self, which=''):
        gr.top_block.__init__(self, "Filter Test")

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 32000

        ##################################################
        # Blocks
        ##################################################
        self.gr_null_source_0 = gr.null_source(gr.sizeof_gr_complex*1)
        self.gr_null_sink_0 = gr.null_sink(gr.sizeof_gr_complex*1)
        self.blks2_rational_resampler_xxx_0 = blks2.rational_resampler_ccc(
            interpolation=3,
            decimation=7,
            taps=None,
            fractional_bw=None,
        )
        self.fir_filter_xxx_0 = filter.fir_filter_ccc(7, ([.7]*23))

        if which == 'dfir': self.filter = self.fir_filter_xxx_0
        if which == 'resamp': self.filter = self.blks2_rational_resampler_xxx_0

        ##################################################
        # Connections
        ##################################################
        self.connect((self.filter, 0), (self.gr_null_sink_0, 0))
        self.connect((self.gr_null_source_0, 0), (self.filter, 0))
class BandPassFilterBlock(FlowGraphBlock):
  def __init__(self):
    FlowGraphBlock.__init__(self)

  def setup(self, params):
    if (len(params) != 4):
      print "GNURadio: Invalid number of band pass filter parameters"
      return None
    try:
      sampleRate = float(params[0])
      lowCutoffFreq = float(params[1])
      highCutoffFreq = float(params[2])
      gain = float(params[3])
    except ValueError, msg:
      print "GNURadio: Invalid band pass filter parameter - %s" % msg
      return None
    if ((lowCutoffFreq <= 0) or (highCutoffFreq >= sampleRate/2) or
        (lowCutoffFreq >= highCutoffFreq)):
      print "GNURadio: Band pass cutoff frequencies out of range"
      return None

    # Calculate the FIR filter taps using the Blackman-Harris window method.
    transitionWidth = sampleRate/25
    filterTaps = filter.firdes.complex_band_pass(gain, sampleRate, lowCutoffFreq,
      highCutoffFreq, transitionWidth, filter.firdes.WIN_BLACKMAN_HARRIS)
    print "Generated FIR filter with %d taps" % len(filterTaps)
    self.firFilter = filter.fir_filter_ccc(1, filterTaps)
    return self
    def test_001_t(self):
        fftlen = 128
        cell_id = 124
        taps = filter.optfir.low_pass(1, fftlen * 15e3, 472.5e3, 900e3, 0.2,
                                      40)
        samples = t.get_mod_frame(cell_id, 6, 1, fftlen)
        samps = np.tile(samples[0], 5)

        src = blocks.vector_source_c(samps, repeat=False, vlen=1)
        fir = filter.fir_filter_ccc(fftlen / 64, taps)
        sync = lte.mimo_pss_coarse_sync(4, 1)
        dbg0 = blocks.message_debug()
        dbg1 = blocks.message_debug()
        dbg2 = blocks.message_debug()

        self.tb.connect(src, fir, sync)
        self.tb.msg_connect((sync, 'control'), (dbg0, 'store'))
        self.tb.msg_connect((sync, 'N_id_2'), (dbg1, 'store'))
        self.tb.msg_connect((sync, 'coarse_pos'), (dbg2, 'store'))
        # set up fg
        self.tb.run()
        # check data
        self.assertEqual(pmt.to_long(dbg1.get_message(0)), int(cell_id % 3))

        ctrl_res = pmt.to_bool(dbg0.get_message(0))
        assert ctrl_res

        offset = 10 + 5 * 9 + 6 * fftlen
        print(offset)

        # print()
        pos = pmt.to_long(dbg2.get_message(0))
        print(pos)
        print(pos * 2 - (len(taps) // 2))
Exemple #8
0
    def __init__(self, N, fs, bw, tw, atten, D):
        """
        Nombre de la funcion donde se implementaran las opraciones y 
        contendra todas las variables del programa, basicamente seria 
        el contenedor del programa.

        """

        gr.top_block.__init__(self)

        self._nsamps = N
        self._fs = fs
        self._bw = bw
        self._tw = tw
        self._at = atten
        self._decim = D
        taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw,
                                        self._at)
        print "Num. Taps: ", len(taps)

        self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1)
        self.head = blocks.head(gr.sizeof_gr_complex, self._nsamps)

        self.filt0 = filter.fir_filter_ccc(self._decim, taps)

        self.vsnk_src = blocks.vector_sink_c()
        self.vsnk_out = blocks.vector_sink_c()

        self.connect(self.src, self.head, self.vsnk_src)
        self.connect(self.head, self.filt0, self.vsnk_out)
Exemple #9
0
    def __init__(self, delay=0, taps=[]):
        gr.hier_block2.__init__(
            self,
            "Conj FS IQBal",
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
        )

        ##################################################
        # Parameters
        ##################################################
        self.delay = delay
        self.taps = taps

        ##################################################
        # Blocks
        ##################################################
        self.filter_fir_filter_xxx_0 = filter.fir_filter_ccc(1, (taps))
        self.delay_0 = blocks.delay(gr.sizeof_gr_complex * 1, delay)
        self.blocks_conjugate_cc_0 = blocks.conjugate_cc()
        self.blocks_add_xx_0 = blocks.add_vcc(1)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_add_xx_0, 0), (self, 0))
        self.connect((self, 0), (self.blocks_conjugate_cc_0, 0))
        self.connect((self.filter_fir_filter_xxx_0, 0),
                     (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_conjugate_cc_0, 0),
                     (self.filter_fir_filter_xxx_0, 0))
        self.connect((self, 0), (self.delay_0, 0))
        self.connect((self.delay_0, 0), (self.blocks_add_xx_0, 0))
Exemple #10
0
    def __init__(self, delay=0, taps=[]):
        gr.hier_block2.__init__(
            self,
            "Conj FS IQBal",
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
        )

        ##################################################
        # Parameters
        ##################################################
        self.delay = delay
        self.taps = taps

        ##################################################
        # Blocks
        ##################################################
        self.filter_fir_filter_xxx_0 = filter.fir_filter_ccc(1, (taps))
        self.delay_0 = blocks.delay(gr.sizeof_gr_complex * 1, delay)
        self.blocks_conjugate_cc_0 = blocks.conjugate_cc()
        self.blocks_add_xx_0 = blocks.add_vcc(1)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_add_xx_0, 0), (self, 0))
        self.connect((self, 0), (self.blocks_conjugate_cc_0, 0))
        self.connect((self.filter_fir_filter_xxx_0, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_conjugate_cc_0, 0), (self.filter_fir_filter_xxx_0, 0))
        self.connect((self, 0), (self.delay_0, 0))
        self.connect((self.delay_0, 0), (self.blocks_add_xx_0, 0))
Exemple #11
0
    def __init__(self, input_rate=48000):
        gr.hier_block2.__init__(
            self,
            "CQPSK Receiver",
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(1, 1, gr.sizeof_float * 1),
        )

        ##################################################
        # Parameters
        ##################################################
        self.input_rate = input_rate

        ##################################################
        # Variables
        ##################################################
        self.fa = fa = 6250
        self.fb = fb = fa + 0.1 * fa

        ##################################################
        # Blocks
        ##################################################
        self.short_to_float = blocks.short_to_float(1, 32768)
        self.p25_symbol_mapper_fb_0 = p25_symbol_mapper_fb(
            threshold1=-2.0,
            threshold2=0.0,
            threshold3=2.0,
            threshold4=4.0,
        )
        self.p25_cqpsk_demodulator_cf_0 = p25_cqpsk_demodulator_cf(
            costas_alpha=0.04,
            gain_mu=0.025,
            input_rate=48000,
            output_rate=4800,
        )
        self.op25_frame_assembler_0 = op25_repeater.p25_frame_assembler(
            "127.0.01", 0, True, True, True, False, gr.msg_queue(1), True,
            False)
        self.cutoff = filter.fir_filter_ccc(1, (filter.firdes.low_pass(
            1.0, 48000, (fa + fb) / 2, fb - fa, filter.firdes.WIN_HANN)))
        self.cutoff.declare_sample_delay(0)
        self.arb_resampler = p25_arb_resampler_cc(
            input_rate=input_rate,
            output_rate=48000,
        )

        ##################################################
        # Connections
        ##################################################
        self.connect((self.arb_resampler, 0), (self.cutoff, 0))
        self.connect((self.cutoff, 0), (self.p25_cqpsk_demodulator_cf_0, 0))
        self.connect((self.op25_frame_assembler_0, 0),
                     (self.short_to_float, 0))
        self.connect((self.p25_cqpsk_demodulator_cf_0, 0),
                     (self.p25_symbol_mapper_fb_0, 0))
        self.connect((self.p25_symbol_mapper_fb_0, 0),
                     (self.op25_frame_assembler_0, 0))
        self.connect((self, 0), (self.arb_resampler, 0))
        self.connect((self.short_to_float, 0), (self, 0))
Exemple #12
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Top Block")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 44100

        ##################################################
        # Blocks
        ##################################################
        self.wxgui_numbersink2_0 = numbersink2.number_sink_f(
            self.GetWin(),
            unit="Hz",
            minval=50,
            maxval=280,
            factor=1,
            decimal_places=2,
            ref_level=0,
            sample_rate=samp_rate,
            number_rate=15,
            average=False,
            avg_alpha=None,
            label="Number Plot",
            peak_hold=False,
            show_gauge=True,
        )
        self.Add(self.wxgui_numbersink2_0.win)
        self.blocks_moving_average_xx_0 = blocks.moving_average_ff(
            samp_rate / 50, 25 / pi, 200)
        self.blocks_keep_one_in_n_0 = blocks.keep_one_in_n(
            gr.sizeof_float * 1, 10)
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.band_pass_filter_0 = filter.fir_filter_ccc(
            1,
            firdes.complex_band_pass(1, samp_rate, 60, 255, 100,
                                     firdes.WIN_BLACKMAN, 6.76))
        self.audio_source_0 = audio.source(samp_rate, "default", True)
        self.analog_pll_freqdet_cf_0 = analog.pll_freqdet_cf(
            200 * 2.0 * pi / samp_rate, 260 * 2.0 * pi / samp_rate,
            60 * 2.0 * pi / samp_rate)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_moving_average_xx_0, 0),
                     (self.wxgui_numbersink2_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.band_pass_filter_0, 0))
        self.connect((self.band_pass_filter_0, 0),
                     (self.analog_pll_freqdet_cf_0, 0))
        self.connect((self.audio_source_0, 0),
                     (self.blocks_float_to_complex_0, 0))
        self.connect((self.analog_pll_freqdet_cf_0, 0),
                     (self.blocks_keep_one_in_n_0, 0))
        self.connect((self.blocks_keep_one_in_n_0, 0),
                     (self.blocks_moving_average_xx_0, 0))
Exemple #13
0
    def __init__(self, fft_len, freq_sample_delay_samps, freq_samps_to_avg, mag_samps_to_avg, thresh):
        gr.hier_block2.__init__(self,
            "Coarse Dehopper",
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1),
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1))
        '''
        Constructor
        
        @param fft_len - 
        @param freq_sample_delay_samps - 
        @param freq_samps_to_avg -
        @param mag_samps_to_avg - 
        @param thresh - 
        '''

        ##################################################
        # Parameters
        ##################################################
        self.fft_len = fft_len
        self.freq_sample_delay_samps = freq_sample_delay_samps
        self.freq_samps_to_avg = freq_samps_to_avg
        self.mag_samps_to_avg = mag_samps_to_avg
        self.thresh = thresh

        ##################################################
        # Blocks
        ##################################################
        self.s_and_h_detector = s_and_h_detector(
            freq_sample_delay_samps=freq_sample_delay_samps,
            freq_samps_to_avg=freq_samps_to_avg,
            mag_samps_to_avg=mag_samps_to_avg,
            thresh=thresh,
        )
        self.resamp = pfb.arb_resampler_ccf(1.0 / (fft_len / 4.0), taps=None, flt_size=32)
        self.resamp.declare_sample_delay(0)
        self.fir = filter.fir_filter_ccc(2, (firdes.low_pass_2(1,1,.30,.05,60)))
        self.fir.declare_sample_delay(0)
        self.fft_peak = fft_peak(fft_len=fft_len)
        self.vco = blocks.vco_c(1, 2.0 * pi / fft_len, 1)
        self.mult_conj = blocks.multiply_conjugate_cc(1)
        self.delay = blocks.delay(gr.sizeof_gr_complex*1, int(freq_samps_to_avg) + freq_sample_delay_samps)
        self.c2mag = blocks.complex_to_mag(1)



        ##################################################
        # Connections
        ##################################################
        self.connect((self.c2mag, 0), (self.s_and_h_detector, 0))
        self.connect((self.delay, 0), (self.mult_conj, 0))
        self.connect((self.mult_conj, 0), (self.fir, 0))
        self.connect((self.vco, 0), (self.mult_conj, 1))
        self.connect((self.fft_peak, 0), (self.s_and_h_detector, 1))
        self.connect((self.fir, 0), (self.resamp, 0))
        self.connect((self, 0), (self.c2mag, 0))
        self.connect((self, 0), (self.delay, 0))
        self.connect((self, 0), (self.fft_peak, 0))
        self.connect((self.resamp, 0), (self, 0))
        self.connect((self.s_and_h_detector, 0), (self.vco, 0))
Exemple #14
0
	def __init__(self, decim=16, N_id_1=134, N_id_2=0):
		grc_wxgui.top_block_gui.__init__(self, title="Sss Corr Gui")
		_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
		self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

		##################################################
		# Parameters
		##################################################
		self.decim = decim
		self.N_id_1 = N_id_1
		self.N_id_2 = N_id_2

		##################################################
		# Variables
		##################################################
		self.sss_start_ts = sss_start_ts = 10608 - 2048 - 144
		self.samp_rate = samp_rate = 30720e3/decim

		##################################################
		# Blocks
		##################################################
		self.wxgui_scopesink2_0 = scopesink2.scope_sink_f(
			self.GetWin(),
			title="Scope Plot",
			sample_rate=200,
			v_scale=0,
			v_offset=0,
			t_scale=0,
			ac_couple=False,
			xy_mode=False,
			num_inputs=1,
			trig_mode=gr.gr_TRIG_MODE_AUTO,
			y_axis_label="Counts",
		)
		self.Add(self.wxgui_scopesink2_0.win)
		self.gr_vector_to_stream_0 = gr.vector_to_stream(gr.sizeof_gr_complex*1, 2048/decim)
		self.gr_throttle_0 = gr.throttle(gr.sizeof_gr_complex*1, samp_rate*decim)
		self.gr_stream_to_vector_0 = gr.stream_to_vector(gr.sizeof_gr_complex*1, 2048/decim)
		self.gr_skiphead_0 = gr.skiphead(gr.sizeof_gr_complex*1, sss_start_ts)
		self.gr_multiply_const_vxx_0 = gr.multiply_const_vcc((gen_sss_fd(N_id_1, N_id_2, 2048/decim).get_sss_conj_rev()))
		self.gr_integrate_xx_0 = gr.integrate_cc(2048/decim)
		self.gr_file_source_0 = gr.file_source(gr.sizeof_gr_complex*1, "/home/user/git/gr-lte/gr-lte/test/traces/lte_02_796m_30720k_frame.cfile", True)
		self.gr_fft_vxx_0 = gr.fft_vcc(2048/decim, True, (window.blackmanharris(1024)), True, 1)
		self.gr_complex_to_mag_0 = gr.complex_to_mag(1)
		self.fir_filter_xxx_0 = filter.fir_filter_ccc(decim, (firdes.low_pass(1, decim*samp_rate, 550e3, 100e3)))

		##################################################
		# Connections
		##################################################
		self.connect((self.gr_file_source_0, 0), (self.gr_throttle_0, 0))
		self.connect((self.gr_stream_to_vector_0, 0), (self.gr_fft_vxx_0, 0))
		self.connect((self.gr_fft_vxx_0, 0), (self.gr_multiply_const_vxx_0, 0))
		self.connect((self.gr_multiply_const_vxx_0, 0), (self.gr_vector_to_stream_0, 0))
		self.connect((self.gr_vector_to_stream_0, 0), (self.gr_integrate_xx_0, 0))
		self.connect((self.gr_integrate_xx_0, 0), (self.gr_complex_to_mag_0, 0))
		self.connect((self.gr_complex_to_mag_0, 0), (self.wxgui_scopesink2_0, 0))
		self.connect((self.gr_throttle_0, 0), (self.gr_skiphead_0, 0))
		self.connect((self.gr_skiphead_0, 0), (self.fir_filter_xxx_0, 0))
		self.connect((self.fir_filter_xxx_0, 0), (self.gr_stream_to_vector_0, 0))
Exemple #15
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Ntsc Hackrf")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.samples_per_line = samples_per_line = 772
        self.samp_rate = samp_rate = samples_per_line * 60 * .999 * 525 / 2
        self.rf_gain = rf_gain = 14
        self.if_gain = if_gain = 40
        self.digital_gain = digital_gain = 0.9
        self.center_freq = center_freq = 186000000 + 1250000

        ##################################################
        # Blocks
        ##################################################
        self.zero = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 0)
        self.osmosdr_sink_0 = osmosdr.sink(args="numchan=" + str(1) + " " +
                                           "hackrf=0")
        self.osmosdr_sink_0.set_sample_rate(samp_rate)
        self.osmosdr_sink_0.set_center_freq(center_freq, 0)
        self.osmosdr_sink_0.set_freq_corr(0, 0)
        self.osmosdr_sink_0.set_gain(rf_gain, 0)
        self.osmosdr_sink_0.set_if_gain(if_gain, 0)
        self.osmosdr_sink_0.set_bb_gain(0, 0)
        self.osmosdr_sink_0.set_antenna("", 0)
        self.osmosdr_sink_0.set_bandwidth(0, 0)

        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vff(
            (digital_gain, ))
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.blocks_file_source_0 = blocks.file_source(
            gr.sizeof_float * 1, "/home/ubuntu/WAHD-TV/ve3irr-testing.dat",
            True)
        self.blocks_add_xx_0 = blocks.add_vcc(1)
        self.band_pass_filter_0 = filter.fir_filter_ccc(
            1,
            firdes.complex_band_pass(1, samp_rate, -2475000 + 1725000,
                                     2475000 + 1725000, 500000,
                                     firdes.WIN_HAMMING, 6.76))
        self.analog_sig_source_x_1 = analog.sig_source_c(
            samp_rate, analog.GR_COS_WAVE, 4500000, 0.1, 0)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_1, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.band_pass_filter_0, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_add_xx_0, 0), (self.osmosdr_sink_0, 0))
        self.connect((self.blocks_file_source_0, 0),
                     (self.blocks_multiply_const_vxx_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.band_pass_filter_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_float_to_complex_0, 0))
        self.connect((self.zero, 0), (self.blocks_float_to_complex_0, 1))
Exemple #16
0
def test_fir_filter_ccc():
    top = gr.top_block()
    src = blocks.null_source(gr.sizeof_gr_complex)
    firfilter = filter.fir_filter_ccc(1, [complex(random.random(), random.random()) for _ in range(16)])
    probe = blocks.probe_rate(gr.sizeof_gr_complex)
    top.connect(src, firfilter, probe)

    return top, probe
def test_fir_filter_ccc():
    top = gr.top_block()
    src = blocks.null_source(gr.sizeof_gr_complex)
    firfilter = filter.fir_filter_ccc(1, [complex(random.random(), random.random()) for _ in range(256)])
    probe = blocks.probe_rate(gr.sizeof_gr_complex)
    top.connect(src, firfilter, probe)

    return top, probe
    def __init__(self, uhd_address, options):

        gr.top_block.__init__(self)

        self.uhd_addr = uhd_address
        self.freq = options.freq
        self.samp_rate = options.samp_rate
        self.gain = options.gain
        self.threshold = options.threshold
        self.trigger = options.trigger

        self.uhd_src = uhd.single_usrp_source(
            device_addr=self.uhd_addr,
            stream_args=uhd.stream_args('fc32'))

        self.uhd_src.set_samp_rate(self.samp_rate)
        self.uhd_src.set_center_freq(self.freq, 0)
        self.uhd_src.set_gain(self.gain, 0)

        taps = firdes.low_pass_2(1, 1, 0.4, 0.1, 60)
        self.chanfilt = filter.fir_filter_ccc(10, taps)
        self.tagger = blocks.burst_tagger(gr.sizeof_gr_complex)

        # Dummy signaler to collect a burst on known periods
        data = 1000*[0,] + 1000*[1,]
        self.signal = blocks.vector_source_s(data, True)

        # Energy detector to get signal burst
        ## use squelch to detect energy
        self.det  = analog.simple_squelch_cc(self.threshold, 0.01)
        ## convert to mag squared (float)
        self.c2m = blocks.complex_to_mag_squared()
        ## average to debounce
        self.avg = filter.single_pole_iir_filter_ff(0.01)
        ## rescale signal for conversion to short
        self.scale = blocks.multiply_const_ff(2**16)
        ## signal input uses shorts
        self.f2s = blocks.float_to_short()

        # Use file sink burst tagger to capture bursts
        self.fsnk = blocks.tagged_file_sink(gr.sizeof_gr_complex, self.samp_rate)


        ##################################################
        # Connections
        ##################################################
        self.connect((self.uhd_src, 0), (self.tagger, 0))
        self.connect((self.tagger, 0), (self.fsnk, 0))

        if self.trigger:
            # Connect a dummy signaler to the burst tagger
            self.connect((self.signal, 0), (self.tagger, 1))

        else:
            # Connect an energy detector signaler to the burst tagger
            self.connect(self.uhd_src, self.det)
            self.connect(self.det, self.c2m, self.avg, self.scale, self.f2s)
            self.connect(self.f2s, (self.tagger, 1))
    def __init__(self, uhd_address, options):

        gr.top_block.__init__(self)

        self.uhd_addr = uhd_address
        self.freq = options.freq
        self.samp_rate = options.samp_rate
        self.gain = options.gain
        self.threshold = options.threshold
        self.trigger = options.trigger

        self.uhd_src = uhd.single_usrp_source(
            device_addr=self.uhd_addr,
            stream_args=uhd.stream_args('fc32'))

        self.uhd_src.set_samp_rate(self.samp_rate)
        self.uhd_src.set_center_freq(self.freq, 0)
        self.uhd_src.set_gain(self.gain, 0)

        taps = firdes.low_pass_2(1, 1, 0.4, 0.1, 60)
        self.chanfilt = filter.fir_filter_ccc(10, taps)
        self.tagger = blocks.burst_tagger(gr.sizeof_gr_complex)

        # Dummy signaler to collect a burst on known periods
        data = 1000 * [0, ] + 1000 * [1, ]
        self.signal = blocks.vector_source_s(data, True)

        # Energy detector to get signal burst
        # use squelch to detect energy
        self.det = analog.simple_squelch_cc(self.threshold, 0.01)
        # convert to mag squared (float)
        self.c2m = blocks.complex_to_mag_squared()
        # average to debounce
        self.avg = filter.single_pole_iir_filter_ff(0.01)
        # rescale signal for conversion to short
        self.scale = blocks.multiply_const_ff(2**16)
        # signal input uses shorts
        self.f2s = blocks.float_to_short()

        # Use file sink burst tagger to capture bursts
        self.fsnk = blocks.tagged_file_sink(
            gr.sizeof_gr_complex, self.samp_rate)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.uhd_src, 0), (self.tagger, 0))
        self.connect((self.tagger, 0), (self.fsnk, 0))

        if self.trigger:
            # Connect a dummy signaler to the burst tagger
            self.connect((self.signal, 0), (self.tagger, 1))

        else:
            # Connect an energy detector signaler to the burst tagger
            self.connect(self.uhd_src, self.det)
            self.connect(self.det, self.c2m, self.avg, self.scale, self.f2s)
            self.connect(self.f2s, (self.tagger, 1))
Exemple #20
0
    def __init__(self, samp_rate,sps,alpha,mu,nB,nF,nW,description_name,mode):
        gr.hier_block2.__init__(self,
                                "physical_layer_driver",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature3(3, 3,
                                                 gr.sizeof_gr_complex,
                                                 gr.sizeof_gr_complex,
                                                 gr.sizeof_gr_complex*(1+sps*(nB+nF)))) # Output signature

        self._sps   = sps
        self._alpha = alpha
        self._mu    = mu
        self._nB    = nB
        self._nF    = nF
        self._nW    = nW

        m = importlib.import_module('digitalhf.physical_layer.'+description_name)
        self._physical_layer_driver_description = m.PhysicalLayer(sps)
        self._physical_layer_driver_description.set_mode(mode)

        ## TODO: get rrc tap information from physical layer description
        self._rrc_taps = filter.firdes.root_raised_cosine(1.0, samp_rate, samp_rate/sps, 0.35, 11*sps)
        preamble_offset,preamble_samples = self._physical_layer_driver_description.get_preamble_z()
        preamble_length          = len(preamble_samples)
        self._rrc_filter         = filter.fir_filter_ccc(1, (self._rrc_taps))
        self._corr_est           = digital.corr_est_cc(symbols    = (preamble_samples.tolist()),
                                                       sps        = sps,
                                                       mark_delay = preamble_offset,
                                                       threshold  = 0.5,
                                                       threshold_method = 1)
        self._doppler_correction = digitalhf.doppler_correction_cc(preamble_length, len(preamble_samples))
        self._adaptive_filter    = digitalhf.adaptive_dfe(sps, nB, nF, nW, mu, alpha)
        self._msg_proxy          = digitalhf.msg_proxy(self._physical_layer_driver_description)
        self.connect((self, 0),
                     (self._rrc_filter, 0),
                     (self._corr_est, 0),
                     (self._doppler_correction, 0),
                     (self._adaptive_filter, 0),
                     (self, 0))
        self.connect((self._corr_est, 1),        ## correlation
                     (self, 1))
        self.connect((self._adaptive_filter, 1), ## taps
                     (self, 2))

        self.msg_connect((self._doppler_correction, 'doppler'), (self._msg_proxy, 'doppler'))
        self.msg_connect((self._msg_proxy, 'doppler'), (self._doppler_correction, 'doppler'))

        self.msg_connect((self._adaptive_filter, 'frame_info'), (self._msg_proxy, 'frame_info'))
        self.msg_connect((self._msg_proxy, 'frame_info'), (self._adaptive_filter, 'frame_info'))

        constellations_data = self._physical_layer_driver_description.get_constellations()
        constellations_msg  = pmt.to_pmt([{'idx': idx, 'points': c['points'], 'symbols': c['symbols']}
                                          for (idx,c) in enumerate(constellations_data)])
        self._adaptive_filter.to_basic_block()._post(pmt.intern('constellations'), constellations_msg)

        self.message_port_register_hier_out('soft_dec')
        self.msg_connect((self._adaptive_filter, 'soft_dec'), (self, 'soft_dec'))
        self.msg_connect((self._msg_proxy, 'soft_dec'), (self, 'soft_dec'))
    def __init__(self):
        gr.top_block.__init__(self, "SSB Transmitter V1 - F1ATB - MAY 2020")

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 2400000
        self.LSB_USB = LSB_USB = 1
        self.GainRF_TX = GainRF_TX = 100
        self.GainIF_TX = GainIF_TX = 300
        self.GainBB_TX = GainBB_TX = 40
        self.Fr_TX = Fr_TX = 145100000

        ##################################################
        # Blocks
        ##################################################
        self.rational_resampler_xxx_1 = filter.rational_resampler_ccc(
            interpolation=240, decimation=1, taps=None, fractional_bw=None)
        self.hilbert_fc_0 = filter.hilbert_fc(64, firdes.WIN_HAMMING, 6.76)
        self.hilbert_fc_0.set_min_output_buffer(10)
        self.hilbert_fc_0.set_max_output_buffer(10)
        self.blocks_udp_source_0 = blocks.udp_source(gr.sizeof_short * 1,
                                                     '127.0.0.1', 9005, 512,
                                                     True)
        self.blocks_udp_source_0.set_max_output_buffer(2048)
        self.blocks_short_to_float_0 = blocks.short_to_float(1, 32767)
        self.blocks_null_sink_0 = blocks.null_sink(gr.sizeof_gr_complex * 1)
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_ff(LSB_USB)
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.blocks_complex_to_float_0 = blocks.complex_to_float(1)
        self.band_pass_filter_0 = filter.fir_filter_ccc(
            1,
            firdes.complex_band_pass(1, samp_rate / 240,
                                     -1300 + LSB_USB * 1500,
                                     1300 + LSB_USB * 1500, 200,
                                     firdes.WIN_HAMMING, 6.76))

        ##################################################
        # Connections
        ##################################################
        self.connect((self.band_pass_filter_0, 0),
                     (self.rational_resampler_xxx_1, 0))
        self.connect((self.blocks_complex_to_float_0, 0),
                     (self.blocks_float_to_complex_0, 0))
        self.connect((self.blocks_complex_to_float_0, 1),
                     (self.blocks_multiply_const_vxx_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.band_pass_filter_0, 0))
        self.connect((self.blocks_multiply_const_vxx_0, 0),
                     (self.blocks_float_to_complex_0, 1))
        self.connect((self.blocks_short_to_float_0, 0), (self.hilbert_fc_0, 0))
        self.connect((self.blocks_udp_source_0, 0),
                     (self.blocks_short_to_float_0, 0))
        self.connect((self.hilbert_fc_0, 0),
                     (self.blocks_complex_to_float_0, 0))
        self.connect((self.rational_resampler_xxx_1, 0),
                     (self.blocks_null_sink_0, 0))
Exemple #22
0
    def __init__(self, win, sat_name, mode_name):
        gr.hier_block2.__init__(self, "Channel "+str(sat_name)+" "+str(mode_name)+" SSB",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
                                gr.io_signature(1, 1, gr.sizeof_gr_complex))

        self.trans = trans = 500
        self.sample_rate = sample_rate = 2048000
        self.low_ssb = low_ssb = 200
        self.high_ssb = high_ssb = 2800
        self.decim = decim = 8
        self.agc_decay = agc_decay = 50e-6

        ##################################################
        # Blocks
        ##################################################
        self.fftsink_audio = fftsink2.fft_sink_f(
            win,
            baseband_freq=0,
            y_per_div=5,
            y_divs=10,
            ref_level=-20,
            ref_scale=2.0,
            sample_rate=32000,
            fft_size=1024,
            fft_rate=15,
            average=True,
            avg_alpha=None,
            title="FFT Plot (Audio - "+sat_name+" "+str(mode_name)+")",
            peak_hold=True,
            )

        self.multiply_const_64 = blocks.multiply_const_vff((0.1, ))
        self.complex_to_real = blocks.complex_to_real(1)

        self.rational_resampler = filter.rational_resampler_ccc(
            interpolation=32,
            decimation=64,
            taps=None,
            fractional_bw=None,
            )
        self.band_pass_filter = filter.fir_filter_ccc(4, filter.firdes.complex_band_pass(
            1, sample_rate/decim, low_ssb, high_ssb, trans, filter.firdes.WIN_HAMMING, 6.76))
        self.agc = analog.agc2_cc(0.1, agc_decay, 0.9, 1.0)
        
        ##################################################
        # Connections
        ##################################################
        #self.connect(self, (self.gr_throttle_0, 0))

        self.connect(self, (self.band_pass_filter, 0))
        self.connect((self.band_pass_filter, 0), (self.agc, 0))
        self.connect((self.agc, 0), (self.rational_resampler, 0))
        self.connect((self.rational_resampler, 0), (self.complex_to_real, 0))
        self.connect((self.complex_to_real, 0), (self.multiply_const_64, 0))
        self.connect((self.multiply_const_64, 0), (self.fftsink_audio, 0))
        self.connect((self.multiply_const_64, 0), self)
    def __init__(self, win, sat_name, mode_name):
        gr.hier_block2.__init__(self, "Channel "+str(sat_name)+" "+str(mode_name)+" SSB",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
                                gr.io_signature(1, 1, gr.sizeof_gr_complex))

        self.trans = trans = 500
        self.sample_rate = sample_rate = 2048000
        self.low_ssb = low_ssb = 200
        self.high_ssb = high_ssb = 2800
        self.decim = decim = 8
        self.agc_decay = agc_decay = 50e-6

        ##################################################
        # Blocks
        ##################################################
        self.fftsink_audio = fftsink2.fft_sink_f(
            win,
            baseband_freq=0,
            y_per_div=5,
            y_divs=10,
            ref_level=-20,
            ref_scale=2.0,
            sample_rate=32000,
            fft_size=1024,
            fft_rate=15,
            average=True,
            avg_alpha=None,
            title="FFT Plot (Audio - "+sat_name+" "+str(mode_name)+")",
            peak_hold=True,
            )

        self.multiply_const_64 = blocks.multiply_const_vff((0.1, ))
        self.complex_to_real = blocks.complex_to_real(1)

        self.rational_resampler = filter.rational_resampler_ccc(
            interpolation=32,
            decimation=64,
            taps=None,
            fractional_bw=None,
            )
        self.band_pass_filter = filter.fir_filter_ccc(4, filter.firdes.complex_band_pass(
            1, sample_rate/decim, low_ssb, high_ssb, trans, filter.firdes.WIN_HAMMING, 6.76))
        self.agc = analog.agc2_cc(0.1, agc_decay, 0.9, 1.0)
        
        ##################################################
        # Connections
        ##################################################
        #self.connect(self, (self.gr_throttle_0, 0))

        self.connect(self, (self.band_pass_filter, 0))
        self.connect((self.band_pass_filter, 0), (self.agc, 0))
        self.connect((self.agc, 0), (self.rational_resampler, 0))
        self.connect((self.rational_resampler, 0), (self.complex_to_real, 0))
        self.connect((self.complex_to_real, 0), (self.multiply_const_64, 0))
        self.connect((self.multiply_const_64, 0), (self.fftsink_audio, 0))
        self.connect((self.multiply_const_64, 0), self)
Exemple #24
0
 def create_block(self, taps):
     assert taps is not None
     if self.freq_xlating:
         return grfilter.freq_xlating_fir_filter_ccc(
             self.decimation, taps, 0, self.input_rate)
     else:
         if len(taps) > 10:
             return grfilter.fft_filter_ccc(self.decimation, taps, 1)
         else:
             return grfilter.fir_filter_ccc(self.decimation, taps)
Exemple #25
0
    def __init__(self,
                 N_id_2,
                 decim=16,
                 avg_halfframes=2 * 8,
                 freq_corr=0,
                 dump=None):
        gr.hier_block2.__init__(
            self,
            "PSS correlator",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature(1, 1, gr.sizeof_float),
        )
        vec_half_frame = 30720 * 5 / decim

        self.taps = []
        for i in range(0, 3):
            self.taps.append(
                gen_pss_td(i, N_re=2048 / decim,
                           freq_corr=freq_corr).get_data_conj_rev())
        self.corr = filter.fir_filter_ccc(1, self.taps[N_id_2])
        self.mag = gr.complex_to_mag_squared()
        self.vec = gr.stream_to_vector(gr.sizeof_float * 1, vec_half_frame)
        self.deint = gr.deinterleave(gr.sizeof_float * vec_half_frame)
        self.add = gr.add_vff(vec_half_frame)
        self.argmax = gr.argmax_fs(vec_half_frame)
        self.null = gr.null_sink(gr.sizeof_short * 1)
        self.max = gr.max_ff(vec_half_frame)
        self.to_float = gr.short_to_float(1, 1. / decim)
        self.interleave = gr.interleave(gr.sizeof_float)
        #self.framestart = gr.add_const_ii(-160-144*5-2048*6+30720*5)

        self.connect(self, self.corr, self.mag, self.vec)
        self.connect((self.argmax, 1), self.null)
        #self.connect(self.argmax, self.to_float, self.to_int, self.framestart, self)
        self.connect(self.argmax, self.to_float, self.interleave, self)
        self.connect(self.max, (self.interleave, 1))

        if avg_halfframes == 1:
            self.connect(self.vec, self.argmax)
            self.connect(self.vec, self.max)
        else:
            self.connect(self.vec, self.deint)
            self.connect(self.add, self.argmax)
            self.connect(self.add, self.max)
            for i in range(0, avg_halfframes):
                self.connect((self.deint, i), (self.add, i))

        if dump != None:
            self.connect(
                self.mag,
                gr.file_sink(gr.sizeof_float, dump + "_pss_corr_f.cfile"))
            self.connect(
                self.add,
                gr.file_sink(gr.sizeof_float * vec_half_frame,
                             dump + "_pss_corr_add_f.cfile"))
Exemple #26
0
    def __init__(self):
        gr.top_block.__init__(self, "Ook Demod")

        ##################################################
        # Command Line Arguments
        ##################################################
	parser = argparse.ArgumentParser()
		
	# Python ook_demod.py -s 1e6 -r 4e3 -f 433.92e6 -m true
	parser.add_argument("-s", "--samp_rate", default=1e6, help="Sample rate of software-defined radio")
	parser.add_argument("-r", "--symbol_rate", default=4e3, help="Symbol rate of key fob")
	parser.add_argument("-f", "--frequency", default=433.92e6, help="Listening frequency")
	parser.add_argument("-m", "--manchester", default=True, help="Manchester decoder", type=str2bool)
	parser.add_argument("-o", "--output", default=None, help="Output file")

	args = parser.parse_args()
        ##################################################
        # Variables
        ##################################################
	self.frequency = frequency = float(args.frequency)
        self.symbol_rate = symbol_rate = float(args.symbol_rate)
        self.samp_rate = samp_rate = float(args.sample_rate)
	self.manchester = manchester = args.manchester
	self.output = output = args.output

        ##################################################
        # Blocks
        ##################################################
        self.osmosdr_source_0 = osmosdr.source( args="numchan=" + str(1) + " " + '' )
        self.osmosdr_source_0.set_sample_rate(samp_rate)
        self.osmosdr_source_0.set_center_freq(frequency, 0)
        self.osmosdr_source_0.set_freq_corr(0, 0)
        self.osmosdr_source_0.set_dc_offset_mode(0, 0)
        self.osmosdr_source_0.set_iq_balance_mode(0, 0)
        self.osmosdr_source_0.set_gain_mode(False, 0)
        self.osmosdr_source_0.set_gain(10, 0)
        self.osmosdr_source_0.set_if_gain(20, 0)
        self.osmosdr_source_0.set_bb_gain(20, 0)
        self.osmosdr_source_0.set_antenna('', 0)
        self.osmosdr_source_0.set_bandwidth(0, 0)

        self.ook_demod_block = ook_demod_block.blk(symbol_rate=symbol_rate, sample_rate=samp_rate, manchester_decoding=manchester, sink_file=output)
        self.blocks_threshold_ff_0 = blocks.threshold_ff(1e-3, 1e-3, 0)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1)
        self.band_pass_filter_0 = filter.fir_filter_ccc(1, firdes.complex_band_pass(
        	1, samp_rate, 1, 50e3, 20e3, firdes.WIN_HAMMING, 6.76))

        ##################################################
        # Connections
        ##################################################
        self.connect((self.band_pass_filter_0, 0), (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.blocks_threshold_ff_0, 0))
        self.connect((self.blocks_threshold_ff_0, 0), (self.ook_demod_block, 0))
        self.connect((self.osmosdr_source_0, 0), (self.band_pass_filter_0, 0))
Exemple #27
0
 def __make_sideband_demod(self, upper):
     first = grfilter.fir_filter_ccc(
         1,
         firdes.complex_band_pass(
             1.0, self.__demod_rate,
             _am_lower_cutoff_freq if upper else -_am_audio_bandwidth,
             _am_audio_bandwidth if upper else -_am_lower_cutoff_freq, 1000,
             firdes.WIN_HAMMING))
     last = self.__make_dc_blocker()
     self.connect(first, blocks.complex_to_real(), last)
     return first, last
Exemple #28
0
 def __make_sideband_demod(self, upper):
     first = grfilter.fir_filter_ccc(
         1,
         firdes.complex_band_pass(1.0, self.__demod_rate,
             _am_lower_cutoff_freq if upper else -_am_audio_bandwidth,
             _am_audio_bandwidth if upper else -_am_lower_cutoff_freq,
             1000,
             firdes.WIN_HAMMING))
     last = self.__make_dc_blocker()
     self.connect(first, blocks.complex_to_real(), last)
     return first, last
Exemple #29
0
def reference_filter_ccc(dec, taps, input):
    """
    compute result using conventional fir filter
    """
    tb = gr.top_block()
    #src = blocks.vector_source_c(((0,) * (len(taps) - 1)) + input)
    src = blocks.vector_source_c(input)
    op = filter.fir_filter_ccc(dec, taps)
    dst = blocks.vector_sink_c()
    tb.connect(src, op, dst)
    tb.run()
    return dst.data()
Exemple #30
0
    def __init__(self, bias, freq_sample_delay_samps, freq_samps_to_avg, mag_samps_to_avg, resamp_rate, thresh):
        gr.hier_block2.__init__(self,
            "Fine Dehopper",
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1),
            gr.io_signature(1, 1, gr.sizeof_gr_complex*1))

        ##################################################
        # Parameters
        ##################################################
        self.bias = bias
        self.freq_sample_delay_samps = freq_sample_delay_samps
        self.freq_samps_to_avg = freq_samps_to_avg
        self.mag_samps_to_avg = mag_samps_to_avg
        self.resamp_rate = resamp_rate
        self.thresh = thresh

        ##################################################
        # Blocks
        ##################################################
        self.s_and_h_detector = s_and_h_detector(
            freq_sample_delay_samps=freq_sample_delay_samps,
            freq_samps_to_avg=freq_samps_to_avg,
            mag_samps_to_avg=mag_samps_to_avg,
            thresh=thresh,
        )
        self.resamp = pfb.arb_resampler_ccf(resamp_rate * 2.0, taps=None, flt_size=32)
        self.resamp.declare_sample_delay(0)
        self.fir = filter.fir_filter_ccc(2, (firdes.low_pass_2(1,1,.25,.05,60)))
        self.fir.declare_sample_delay(0)
        self.vco = blocks.vco_c(1, 1, 1)
        self.mult_conj = blocks.multiply_conjugate_cc(1)
        self.delay = blocks.delay(gr.sizeof_gr_complex*1, int(freq_samps_to_avg) + freq_sample_delay_samps)
        self.c2mag = blocks.complex_to_mag(1)
        self.add_const = blocks.add_const_vff((-1.0 * bias * (resamp_rate), ))
        self.demod = analog.quadrature_demod_cf(1)



        ##################################################
        # Connections
        ##################################################
        self.connect((self.demod, 0), (self.s_and_h_detector, 1))
        self.connect((self.add_const, 0), (self.vco, 0))
        self.connect((self.c2mag, 0), (self.s_and_h_detector, 0))
        self.connect((self.delay, 0), (self.mult_conj, 0))
        self.connect((self.mult_conj, 0), (self.fir, 0))
        self.connect((self.vco, 0), (self.mult_conj, 1))
        self.connect((self.fir, 0), (self.resamp, 0))
        self.connect((self, 0), (self.demod, 0))
        self.connect((self, 0), (self.c2mag, 0))
        self.connect((self, 0), (self.delay, 0))
        self.connect((self.resamp, 0), (self, 0))
        self.connect((self.s_and_h_detector, 0), (self.add_const, 0))
def reference_filter_ccc(dec, taps, input):
    """
    compute result using conventional fir filter
    """
    tb = gr.top_block()
    #src = blocks.vector_source_c(((0,) * (len(taps) - 1)) + input)
    src = blocks.vector_source_c(input)
    op = filter.fir_filter_ccc(dec, taps)
    dst = blocks.vector_sink_c()
    tb.connect(src, op, dst)
    tb.run()
    return dst.data()
    def test_fir_filter_ccc_002(self):
        decim = 1
        taps = firdes.low_pass(1, 1, 0.1, 0.01)
        src_data = [0] * len(taps) + 10 * [1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]
        expected_data = fir_filter(src_data, taps, decim)

        src = blocks.vector_source_c(src_data)
        op = filter.fir_filter_ccc(decim, taps)
        dst = blocks.vector_sink_c()
        self.tb.connect((src, op, dst))
        self.tb.run()
        result_data = dst.data()
        self.assertComplexTuplesAlmostEqual(expected_data, result_data, 5)
Exemple #33
0
 def create_block(self, taps):
     assert taps is not None
     if self.freq_xlating:
         return grfilter.freq_xlating_fir_filter_ccc(
             self.decimation,
             taps,
             0,
             self.input_rate)
     else:
         if len(taps) > 10:
             return grfilter.fft_filter_ccc(self.decimation, taps, 1)
         else:
             return grfilter.fir_filter_ccc(self.decimation, taps)
    def test_fir_filter_ccc_001(self):
        decim = 1
        taps = 20 * [0.5 + 1j, 0.5 + 1j]
        src_data = 40 * [1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]
        expected_data = fir_filter(src_data, taps, decim)

        src = blocks.vector_source_c(src_data)
        op = filter.fir_filter_ccc(decim, taps)
        dst = blocks.vector_sink_c()
        self.tb.connect((src, op, dst))
        self.tb.run()
        result_data = dst.data()
        self.assertComplexTuplesAlmostEqual(expected_data, result_data, 5)
Exemple #35
0
    def test_fir_filter_ccc_001(self):
        decim = 1
        taps = 20*[0.5+1j, 0.5+1j]
        src_data = 40*[1+1j, 2+2j, 3+3j, 4+4j]
        expected_data = fir_filter(src_data, taps, decim)

        src = blocks.vector_source_c(src_data)
        op  = filter.fir_filter_ccc(decim, taps)
        dst = blocks.vector_sink_c()
        self.tb.connect(src, op, dst)
        self.tb.run()
        result_data = dst.data()
        self.assertComplexTuplesAlmostEqual(expected_data, result_data, 5)
Exemple #36
0
    def test_fir_filter_ccc_002(self):
        src_data = 10*[1+1j, 2+2j, 3+3j, 4+4j]
        
        # results derived from original filter.fir_filter_ccc
        expected_data = ((7.537424837948042e-20+7.537424837948042e-20j), (9.131923434324563e-05+9.131923434324563e-05j), (0.0003317668742965907+0.0003317668742965907j), (0.0007230418268591166+0.0007230418268591166j), (0.0012087896466255188+0.0012087896466255188j), (0.0013292605290189385+0.0013292605290189385j), (0.001120875240303576+0.001120875240303576j), (0.000744672492146492+0.000744672492146492j), (0.000429437990533188+0.000429437990533188j), (2.283908543176949e-05+2.283908543176949e-05j), (-0.0002245186478830874-0.0002245186478830874j), (-0.0001157080550910905-0.0001157080550910905j), (0.00041409023106098175+0.00041409023106098175j), (0.0009017843985930085+0.0009017843985930085j), (0.0012520025484263897+0.0012520025484263897j), (0.0014116164529696107+0.0014116164529696107j), (0.001393353333696723+0.001393353333696723j), (0.000912194955162704+0.000912194955162704j), (0.00022649182938039303+0.00022649182938039303j), (-0.00031363096786662936-0.00031363096786662936j), (-0.0003966730728279799-0.0003966730728279799j), (-0.00023757052258588374-0.00023757052258588374j), (0.00021952332463115454+0.00021952332463115454j), (0.0009092430118471384+0.0009092430118471384j), (0.001662317430600524+0.001662317430600524j), (0.0019024648936465383+0.0019024648936465383j), (0.0015955769922584295+0.0015955769922584295j), (0.0009144138311967254+0.0009144138311967254j), (0.0001872836146503687+0.0001872836146503687j), (-0.000581968342885375-0.000581968342885375j), (-0.0009886166080832481-0.0009886166080832481j), (-0.0007480768254026771-0.0007480768254026771j), (0.00018211957649327815+0.00018211957649327815j), (0.0012042406015098095+0.0012042406015098095j), (0.0020200139842927456+0.0020200139842927456j), (0.0023816542234271765+0.0023816542234271765j), (0.002195809967815876+0.002195809967815876j), (0.0012113333214074373+0.0012113333214074373j), (-0.00014088614261709154-0.00014088614261709154j), (-0.0012574587017297745-0.0012574587017297745j))

        taps = filter.firdes.low_pass(1, 1, 0.1, 0.01)
        src = blocks.vector_source_c(src_data)
        op  = filter.fir_filter_ccc(1, taps)
        dst = blocks.vector_sink_c()
        self.tb.connect(src, op, dst)
        self.tb.run()
        result_data = dst.data()
        self.assertComplexTuplesAlmostEqual(expected_data, result_data, 5)
Exemple #37
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Top Block")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 44100

        ##################################################
        # Blocks
        ##################################################
        self.wxgui_numbersink2_0 = numbersink2.number_sink_f(
            self.GetWin(),
            unit="Hz",
            minval=50,
            maxval=280,
            factor=1,
            decimal_places=2,
            ref_level=0,
            sample_rate=samp_rate,
            number_rate=15,
            average=False,
            avg_alpha=None,
            label="Number Plot",
            peak_hold=False,
            show_gauge=True,
        )
        self.Add(self.wxgui_numbersink2_0.win)
        self.blocks_moving_average_xx_0 = blocks.moving_average_ff(samp_rate / 50, 25 / pi, 200)
        self.blocks_keep_one_in_n_0 = blocks.keep_one_in_n(gr.sizeof_float * 1, 10)
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.band_pass_filter_0 = filter.fir_filter_ccc(
            1, firdes.complex_band_pass(1, samp_rate, 60, 255, 100, firdes.WIN_BLACKMAN, 6.76)
        )
        self.audio_source_0 = audio.source(samp_rate, "default", True)
        self.analog_pll_freqdet_cf_0 = analog.pll_freqdet_cf(
            200 * 2.0 * pi / samp_rate, 260 * 2.0 * pi / samp_rate, 60 * 2.0 * pi / samp_rate
        )

        ##################################################
        # Connections
        ##################################################
        self.connect((self.blocks_moving_average_xx_0, 0), (self.wxgui_numbersink2_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0), (self.band_pass_filter_0, 0))
        self.connect((self.band_pass_filter_0, 0), (self.analog_pll_freqdet_cf_0, 0))
        self.connect((self.audio_source_0, 0), (self.blocks_float_to_complex_0, 0))
        self.connect((self.analog_pll_freqdet_cf_0, 0), (self.blocks_keep_one_in_n_0, 0))
        self.connect((self.blocks_keep_one_in_n_0, 0), (self.blocks_moving_average_xx_0, 0))
Exemple #38
0
    def __make_audio_filter(self):
        '''Return a filter which selects just the RTTY signal and shifts to AF.

        This isn't anywhere in the digital processing chain, so doesn't need to
        be concerned with signal fidelity as long as it sounds good.
        '''
        taps = firdes.complex_band_pass(
            gain=1.0,
            sampling_freq=self.__demod_rate,
            low_cutoff_freq=self.__low_cutoff,
            high_cutoff_freq=self.__high_cutoff,
            transition_width=self.__transition_width)

        af_filter = grfilter.fir_filter_ccc(decimation=1, taps=taps)

        return af_filter
Exemple #39
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Ntsc Hackrf")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.samples_per_line = samples_per_line = 772
        self.samp_rate = samp_rate = samples_per_line * 60 * .999 * 525 / 2
        self.rf_gain = rf_gain = 14
        self.if_gain = if_gain = 40
        self.digital_gain = digital_gain = 0.9
        self.center_freq = center_freq = 186000000+1250000

        ##################################################
        # Blocks
        ##################################################
        self.zero = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 0)
        self.osmosdr_sink_0 = osmosdr.sink( args="numchan=" + str(1) + " " + "hackrf=0" )
        self.osmosdr_sink_0.set_sample_rate(samp_rate)
        self.osmosdr_sink_0.set_center_freq(center_freq, 0)
        self.osmosdr_sink_0.set_freq_corr(0, 0)
        self.osmosdr_sink_0.set_gain(rf_gain, 0)
        self.osmosdr_sink_0.set_if_gain(if_gain, 0)
        self.osmosdr_sink_0.set_bb_gain(0, 0)
        self.osmosdr_sink_0.set_antenna("", 0)
        self.osmosdr_sink_0.set_bandwidth(0, 0)
          
        self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vff((digital_gain, ))
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.blocks_file_source_0 = blocks.file_source(gr.sizeof_float*1, "/home/ubuntu/WAHD-TV/ve3irr-testing.dat", True)
        self.blocks_add_xx_0 = blocks.add_vcc(1)
        self.band_pass_filter_0 = filter.fir_filter_ccc(1, firdes.complex_band_pass(
        	1, samp_rate, -2475000 + 1725000, 2475000 + 1725000, 500000, firdes.WIN_HAMMING, 6.76))
        self.analog_sig_source_x_1 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, 4500000, 0.1, 0)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_1, 0), (self.blocks_add_xx_0, 0))    
        self.connect((self.band_pass_filter_0, 0), (self.blocks_add_xx_0, 1))    
        self.connect((self.blocks_add_xx_0, 0), (self.osmosdr_sink_0, 0))    
        self.connect((self.blocks_file_source_0, 0), (self.blocks_multiply_const_vxx_0, 0))    
        self.connect((self.blocks_float_to_complex_0, 0), (self.band_pass_filter_0, 0))    
        self.connect((self.blocks_multiply_const_vxx_0, 0), (self.blocks_float_to_complex_0, 0))    
        self.connect((self.zero, 0), (self.blocks_float_to_complex_0, 1))    
Exemple #40
0
	def __init__(self, mode, audio_rate=0, **kwargs):
		if mode == 'LSB':
			lsb = True
		elif mode == 'USB':
			lsb = False
		else:
			raise ValueError('Not an SSB mode: %r' % (mode,))
		demod_rate = audio_rate
		
		SimpleAudioDemodulator.__init__(self,
			mode=mode,
			audio_rate=audio_rate,
			demod_rate=demod_rate,
			band_filter=audio_rate / 2,  # unused
			band_filter_transition=audio_rate / 2,  # unused
			**kwargs)
		input_rate = self.input_rate
		
		half_bandwidth = self.half_bandwidth = 2800 / 2
		if lsb:
			band_mid = -200 - half_bandwidth
		else:
			band_mid = 200 + half_bandwidth
		self.band_filter_low = band_mid - half_bandwidth
		self.band_filter_high = band_mid + half_bandwidth
		self.band_filter_width = half_bandwidth / 5
		self.sharp_filter_block = grfilter.fir_filter_ccc(
			1,
			firdes.complex_band_pass(1.0, demod_rate,
				self.band_filter_low,
				self.band_filter_high,
				self.band_filter_width,
				firdes.WIN_HAMMING))
		
		self.agc_block = analog.agc2_cc(reference=0.25)
		
		self.ssb_demod_block = blocks.complex_to_real(1)
		
		self.connect(
			self,
			self.band_filter_block,
			self.sharp_filter_block,
			self.rf_squelch_block,
			self.agc_block,
			self.ssb_demod_block)
		self.connect(self.sharp_filter_block, self.rf_probe_block)
		self.connect_audio_output(self.ssb_demod_block, self.ssb_demod_block)
	def __init__(self, decim=16, N_id_2=0, avg_frames=1, freq_corr=0, N_id_1=134, file_name="/home/user/git/gr-lte/gr-lte/test/traces/lte_02_796m_30720k_frame.cfile"):
		gr.top_block.__init__(self, "Pss Corr Block Gui")

		##################################################
		# Parameters
		##################################################
		self.decim = decim
		self.N_id_2 = N_id_2
		self.avg_frames = avg_frames
		self.freq_corr = freq_corr
		self.N_id_1 = N_id_1
		self.file_name = file_name

		##################################################
		# Variables
		##################################################
		self.vec_half_frame = vec_half_frame = 30720*5/decim
		self.transition_width = transition_width = 100e3
		self.samp_rate = samp_rate = 30720e3/decim
		self.cutoff_freq = cutoff_freq = 550e3

		##################################################
		# Blocks
		##################################################
		self.gr_vector_sink_sss10 = gr.vector_sink_i(1)
		self.gr_vector_sink_sss0 = gr.vector_sink_i(1)
		self.gr_vector_sink_pss = gr.vector_sink_i(1)
		self.gr_throttle_0 = gr.throttle(gr.sizeof_gr_complex*1, samp_rate*decim)
		self.gr_null_sink_0 = gr.null_sink(gr.sizeof_gr_complex*1)
		self.gr_file_source_0 = gr.file_source(gr.sizeof_gr_complex*1, file_name, False)
		self.fir_filter_xxx_0 = filter.fir_filter_ccc(decim, (firdes.low_pass(1, decim*samp_rate, cutoff_freq, transition_width)))
		self.any_0_0_0 = sss_corr(N_id_1,N_id_2,False, decim, avg_frames,freq_corr)
		self.any_0_0 = sss_corr(N_id_1,N_id_2,True, decim, avg_frames,freq_corr)
		self.any_0 = pss_corr(N_id_2, decim, avg_frames*2,freq_corr)

		##################################################
		# Connections
		##################################################
		self.connect((self.any_0_0_0, 0), (self.gr_vector_sink_sss10, 0))
		self.connect((self.fir_filter_xxx_0, 0), (self.any_0_0_0, 0))
		self.connect((self.any_0_0, 0), (self.gr_vector_sink_sss0, 0))
		self.connect((self.fir_filter_xxx_0, 0), (self.any_0_0, 0))
		self.connect((self.any_0, 0), (self.gr_vector_sink_pss, 0))
		self.connect((self.fir_filter_xxx_0, 0), (self.any_0, 0))
		self.connect((self.gr_throttle_0, 0), (self.fir_filter_xxx_0, 0))
		self.connect((self.gr_file_source_0, 0), (self.gr_throttle_0, 0))
		self.connect((self.gr_file_source_0, 0), (self.gr_null_sink_0, 0))
Exemple #42
0
    def __init__(self, mode,
            input_rate=0,
            context=None):
        assert input_rate > 0
        gr.hier_block2.__init__(
            self, 'RTTY demodulator',
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(1, 1, gr.sizeof_float * 1),
        )
        self.__text = u''
        
        baud = _DEFAULT_BAUD  # TODO param
        self.baud = baud

        demod_rate = 6000  # TODO optimize this value
        self.samp_rate = demod_rate  # TODO rename
        
        self.__channel_filter = MultistageChannelFilter(
            input_rate=input_rate,
            output_rate=demod_rate,
            cutoff_freq=self.__filter_high,
            transition_width=self.__transition)  # TODO optimize filter band
        self.__sharp_filter = grfilter.fir_filter_ccc(
            1,
            firdes.complex_band_pass(1.0, demod_rate,
                self.__filter_low,
                self.__filter_high,
                self.__transition,
                firdes.WIN_HAMMING))
        self.fsk_demod = RTTYFSKDemodulator(input_rate=demod_rate, baud=baud)
        self.__real = blocks.complex_to_real(vlen=1)
        self.__char_queue = gr.msg_queue(limit=100)
        self.char_sink = blocks.message_sink(gr.sizeof_char, self.__char_queue, True)

        self.connect(
            self,
            self.__channel_filter,
            self.__sharp_filter,
            self.fsk_demod,
            rtty.rtty_decode_ff(rate=demod_rate, baud=baud, polarity=False),
            self.char_sink)
        
        self.connect(
            self.__sharp_filter,
            self.__real,
            self)
Exemple #43
0
    def __init__(self, mode,
            input_rate=0,
            context=None):
        assert input_rate > 0
        gr.hier_block2.__init__(
            self, 'RTTY demodulator',
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(1, 1, gr.sizeof_float * 1),
        )
        self.__text = u''
        
        baud = _DEFAULT_BAUD  # TODO param
        self.baud = baud

        demod_rate = 6000  # TODO optimize this value
        self.samp_rate = demod_rate  # TODO rename
        
        self.__channel_filter = MultistageChannelFilter(
            input_rate=input_rate,
            output_rate=demod_rate,
            cutoff_freq=self.__filter_high,
            transition_width=self.__transition)  # TODO optimize filter band
        self.__sharp_filter = grfilter.fir_filter_ccc(
            1,
            firdes.complex_band_pass(1.0, demod_rate,
                self.__filter_low,
                self.__filter_high,
                self.__transition,
                firdes.WIN_HAMMING))
        self.fsk_demod = RTTYFSKDemodulator(input_rate=demod_rate, baud=baud)
        self.__real = blocks.complex_to_real(vlen=1)
        self.__char_queue = gr.msg_queue(limit=100)
        self.char_sink = blocks.message_sink(gr.sizeof_char, self.__char_queue, True)

        self.connect(
            self,
            self.__channel_filter,
            self.__sharp_filter,
            self.fsk_demod,
            rtty.rtty_decode_ff(rate=demod_rate, baud=baud, polarity=False),
            self.char_sink)
        
        self.connect(
            self.__sharp_filter,
            self.__real,
            self)
Exemple #44
0
    def __make_audio_filter(self):
        '''Return a filter which selects just the RTTY signal and shifts to AF.

        This isn't anywhere in the digital processing chain, so doesn't need to
        be concerned with signal fidelity as long as it sounds good.
        '''
        taps = firdes.complex_band_pass(
            gain=1.0,
            sampling_freq=self.__demod_rate,
            low_cutoff_freq=self.__low_cutoff,
            high_cutoff_freq=self.__high_cutoff,
            transition_width=self.__transition_width)

        af_filter = grfilter.fir_filter_ccc(
            decimation=1,
            taps=taps)

        return af_filter
Exemple #45
0
 def test_fir_filter_ccc_001(self):
     src_data = 40*[1+1j, 2+2j, 3+3j, 4+4j]
     expected_data = ((-0.5+1.5j), (-1.5+4.5j), (-3+9j), (-5+15j),
                      (-5.5+16.5j), (-6.5+19.5j), (-8+24j), (-10+30j),
                      (-10.5+31.5j), (-11.5+34.5j), (-13+39j), (-15+45j),
                      (-15.5+46.5j), (-16.5+49.5j), (-18+54j), (-20+60j),
                      (-20.5+61.5j), (-21.5+64.5j), (-23+69j), (-25+75j),
                      (-25.5+76.5j), (-26.5+79.5j), (-28+84j), (-30+90j),
                      (-30.5+91.5j), (-31.5+94.5j), (-33+99j), (-35+105j),
                      (-35.5+106.5j), (-36.5+109.5j), (-38+114j), (-40+120j),
                      (-40.5+121.5j), (-41.5+124.5j), (-43+129j), (-45+135j),
                      (-45.5+136.5j), (-46.5+139.5j), (-48+144j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j), (-50+150j))
     src = blocks.vector_source_c(src_data)
     op  = filter.fir_filter_ccc(1, 20*[0.5+1j, 0.5+1j])
     dst = blocks.vector_sink_c()
     self.tb.connect(src, op, dst)
     self.tb.run()
     result_data = dst.data()
     self.assertComplexTuplesAlmostEqual(expected_data, result_data, 5)
Exemple #46
0
    def __init__(self, params, freq, filename):
        # Super
        gr.hier_block2.__init__(self, "DirectOutputBranch",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex),
                                gr.io_signature(0, 0, 0))

        prev = self

        # Delay
        if params.delay:
            self.delay = blocks.delay(
                gr.sizeof_gr_complex,
                int(round(params.delay)),
            )
            self.connect((prev, 0), (self.delay, 0))
            prev = self.delay

        # Freq xlating filter
        if params.decim1 > 1:
            self.filt1 = filter.freq_xlating_fir_filter_ccc(
                params.decim1, params.taps1, freq, params.samp_rate)

            self.connect((prev, 0), (self.filt1, 0))
            prev = self.filt1

        # Decimating FIR filter
        if params.decim2 > 1:
            self.filt2 = filter.fir_filter_ccc(params.decim2, params.taps2)

            self.connect((prev, 0), (self.filt2, 0))
            prev = self.filt2

        # PFB Arb Resampler
        if params.resamp != 1:
            self.resamp = pfb.arb_resampler_ccf(params.resamp,
                                                params.taps_resamp,
                                                flt_size=32)
            self.connect((prev, 0), (self.resamp, 0))
            prev = self.resamp

        # Output file
        self.sink = blocks.file_sink(gr.sizeof_gr_complex, filename, False)
        self.connect((prev, 0), (self.sink, 0))
Exemple #47
0
  def __init__(self, N_id_2, decim=16, avg_halfframes=2*8, freq_corr=0, dump=None):
    gr.hier_block2.__init__(
        self, "PSS correlator",
        gr.io_signature(1, 1, gr.sizeof_gr_complex),
        gr.io_signature(1, 1, gr.sizeof_float),
    )
    vec_half_frame = 30720*5/decim
    
    self.taps = []
    for i in range(0,3):
      self.taps.append(gen_pss_td(i, N_re=2048/decim, freq_corr=freq_corr).get_data_conj_rev())
    self.corr = filter.fir_filter_ccc(1, self.taps[N_id_2])
    self.mag = gr.complex_to_mag_squared()
    self.vec = gr.stream_to_vector(gr.sizeof_float*1, vec_half_frame)
    self.deint = gr.deinterleave(gr.sizeof_float*vec_half_frame)
    self.add = gr.add_vff(vec_half_frame)
    self.argmax = gr.argmax_fs(vec_half_frame)
    self.null = gr.null_sink(gr.sizeof_short*1)
    self.max = gr.max_ff(vec_half_frame)
    self.to_float = gr.short_to_float(1, 1./decim)
    self.interleave = gr.interleave(gr.sizeof_float)
    #self.framestart = gr.add_const_ii(-160-144*5-2048*6+30720*5)
    
    self.connect(self, self.corr, self.mag, self.vec)
    self.connect((self.argmax,1), self.null)
    #self.connect(self.argmax, self.to_float, self.to_int, self.framestart, self)
    self.connect(self.argmax, self.to_float, self.interleave, self)
    self.connect(self.max, (self.interleave,1))
    
    if avg_halfframes == 1:
      self.connect(self.vec, self.argmax)
      self.connect(self.vec, self.max)
    else:
      self.connect(self.vec, self.deint)
      self.connect(self.add, self.argmax)
      self.connect(self.add, self.max)
      for i in range(0, avg_halfframes):
        self.connect((self.deint, i), (self.add, i))

    if dump != None:
      self.connect(self.mag, gr.file_sink(gr.sizeof_float, dump + "_pss_corr_f.cfile"))
      self.connect(self.add, gr.file_sink(gr.sizeof_float*vec_half_frame, dump + "_pss_corr_add_f.cfile"))
Exemple #48
0
 def test_fir_filter_ccc_003(self):
     src_data = 40*[1+1j, 2+2j, 3+3j, 4+4j]
     expected_data = ((-0.5+1.5j), (-5.5+16.5j), (-10.5+31.5j),
                      (-15.5+46.5j), (-20.5+61.5j), (-25.5+76.5j),
                      (-30.5+91.5j), (-35.5+106.5j), (-40.5+121.5j),
                      (-45.5+136.5j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j), (-50+150j),
                      (-50+150j), (-50+150j), (-50+150j))
     src = blocks.vector_source_c(src_data)
     op  = filter.fir_filter_ccc(4, 20*[0.5+1j, 0.5+1j])
     dst = blocks.vector_sink_c()
     self.tb.connect(src, op, dst)
     self.tb.run()
     result_data = dst.data()
     self.assertComplexTuplesAlmostEqual(expected_data, result_data, 5)
Exemple #49
0
    def __init__(self, mode, input_rate, context):
        channels = 2
        audio_rate = 10000
        
        gr.hier_block2.__init__(
            self, str('%s demodulator' % (mode,)),
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature(1, 1, gr.sizeof_float * channels))

        self.__input_rate = input_rate
        self.__rec_freq_input = 0.0
        self.__signal_type = SignalType(kind='STEREO', sample_rate=audio_rate)

        # Using agc2 rather than feedforward AGC for efficiency, because this runs at the RF rate rather than the audio rate.
        agc_block = analog.agc2_cc(reference=dB(-8))
        agc_block.set_attack_rate(8e-3)
        agc_block.set_decay_rate(8e-3)
        agc_block.set_max_gain(dB(40))
        
        self.connect(
            self,
            agc_block)
        
        channel_joiner = blocks.streams_to_vector(gr.sizeof_float, channels)
        self.connect(channel_joiner, self)
        
        for channel in six.moves.range(0, channels):
            self.connect(
                agc_block,
                grfilter.fir_filter_ccc(1, design_sawtooth_filter(decreasing=channel == 0)),
                blocks.complex_to_mag(1),
                blocks.float_to_complex(),  # So we can use the complex-input band filter. TODO eliminate this for efficiency
                MultistageChannelFilter(
                    input_rate=input_rate,
                    output_rate=audio_rate,
                    cutoff_freq=5000,
                    transition_width=5000),
                blocks.complex_to_real(),
                # assuming below 40Hz is not of interest
                grfilter.dc_blocker_ff(audio_rate // 40, False),
                (channel_joiner, channel))
Exemple #50
0
    def __init__(self, mode, input_rate, context):
        channels = 2
        audio_rate = 10000
        
        gr.hier_block2.__init__(
            self, str('%s demodulator' % (mode,)),
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature(1, 1, gr.sizeof_float * channels))

        self.__input_rate = input_rate
        self.__rec_freq_input = 0.0
        self.__signal_type = SignalType(kind='STEREO', sample_rate=audio_rate)

        # Using agc2 rather than feedforward AGC for efficiency, because this runs at the RF rate rather than the audio rate.
        agc_block = analog.agc2_cc(reference=dB(-8))
        agc_block.set_attack_rate(8e-3)
        agc_block.set_decay_rate(8e-3)
        agc_block.set_max_gain(dB(40))
        
        self.connect(
            self,
            agc_block)
        
        channel_joiner = blocks.streams_to_vector(gr.sizeof_float, channels)
        self.connect(channel_joiner, self)
        
        for channel in xrange(0, channels):
            self.connect(
                agc_block,
                grfilter.fir_filter_ccc(1, design_sawtooth_filter(decreasing=channel == 0)),
                blocks.complex_to_mag(1),
                blocks.float_to_complex(),  # So we can use the complex-input band filter. TODO eliminate this for efficiency
                MultistageChannelFilter(
                    input_rate=input_rate,
                    output_rate=audio_rate,
                    cutoff_freq=5000,
                    transition_width=5000),
                blocks.complex_to_real(),
                # assuming below 40Hz is not of interest
                grfilter.dc_blocker_ff(audio_rate // 40, False),
                (channel_joiner, channel))
Exemple #51
0
    def __init__(self, options):
        gr.top_block.__init__(self)

        if(options.to_file is not None):
            self.file = blocks.file_sink(gr.sizeof_gr_complex, options.to_file)
            self.sink = blocks.throttle(gr.sizeof_gr_complex,1e6)
            self.connect( self.sink, self.file )
        elif(options.tx_freq is not None):
            self.sink = uhd_transmitter(options.args,
                                        options.bandwidth, options.tx_freq, 
                                        options.lo_offset, options.tx_gain,
                                        options.spec, options.antenna,
                                        options.clock_source, options.verbose)
        else:
            self.sink = blocks.null_sink(gr.sizeof_gr_complex)



        self._setup_tx_path(options)
        self._setup_rpc_manager()

        if options.freqoff is not None:
            freq_off = self.freq_off = channel.freq_offset(options.freqoff )
            self.connect(self.txpath, freq_off)
            self.txpath = freq_off
            self.rpc_mgr_tx.add_interface("set_freq_offset",self.freq_off.set_freqoff)

        if options.multipath:
          if options.itu_channel:
            self.fad_chan = channel.itpp_channel(options.bandwidth)
            self.rpc_mgr_tx.add_interface("set_channel_profile",self.fad_chan.set_channel_profile)
          else:
            self.fad_chan = filter.fir_filter_ccc(1,[1.0,0.0,2e-1+0.1j,1e-4-0.04j])

          self.connect(self.txpath, self.fad_chan)
          self.txpath = self.fad_chan


        self.connect(self.txpath, self.sink)
    def __init__(self, N, fs, bw, tw, atten, D):
        gr.top_block.__init__(self)

        self._nsamps = N
        self._fs = fs
        self._bw = bw
        self._tw = tw
        self._at = atten
        self._decim = D
        taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at)
        print "Num. Taps: ", len(taps)

        self.src  = analog.noise_source_c(analog.GR_GAUSSIAN, 1)
        self.head = blocks.head(gr.sizeof_gr_complex, self._nsamps)

        self.filt0 = filter.fir_filter_ccc(self._decim, taps)

        self.vsnk_src = blocks.vector_sink_c()
        self.vsnk_out = blocks.vector_sink_c()

        self.connect(self.src, self.head, self.vsnk_src)
        self.connect(self.head, self.filt0, self.vsnk_out)
    def test_001_t(self):
        fftlen = 128
        cell_id = 124
        taps = filter.optfir.low_pass(1, fftlen*15e3, 472.5e3, 900e3, 0.2, 40)
        samples = t.get_mod_frame(cell_id, 6, 1, fftlen)
        samps = np.tile(samples[0], 5)

        src = blocks.vector_source_c(samps, repeat=False, vlen=1)
        fir = filter.fir_filter_ccc(fftlen/64, taps)
        sync = lte.mimo_pss_coarse_sync(4, 1)
        dbg0 = blocks.message_debug()
        dbg1 = blocks.message_debug()
        dbg2 = blocks.message_debug()

        self.tb.connect(src, fir, sync)
        self.tb.msg_connect((sync, 'control'), (dbg0, 'store'))
        self.tb.msg_connect((sync, 'N_id_2'), (dbg1, 'store'))
        self.tb.msg_connect((sync, 'coarse_pos'), (dbg2, 'store'))
        # set up fg
        self.tb.run()
        # check data
        self.assertEqual(pmt.to_long(dbg1.get_message(0)), int(cell_id % 3))

        ctrl_res = pmt.to_bool(dbg0.get_message(0))
        assert ctrl_res

        offset = 10 + 5 * 9 + 6 * fftlen
        print(offset)

        # print()
        pos = pmt.to_long(dbg2.get_message(0))
        print(pos)
        print(pos * 2 - (len(taps) // 2))
        import matplotlib.pyplot as plt
        plt.plot(np.abs(samps))
        plt.show()
Exemple #54
0
    def __init__(self):
        gr.top_block.__init__(self, "Top Block")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Top Block")
        try:
             self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        except:
             pass
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        self.settings = Qt.QSettings("GNU Radio", "top_block")
        self.restoreGeometry(self.settings.value("geometry").toByteArray())


        ##################################################
        # Variables
        ##################################################
        self.offset_tune_freq = offset_tune_freq = -10E3
        self.band_freq = band_freq = 7.055E6
        self.usrp_clk_rate = usrp_clk_rate = 200E6
        self.usrp_ask_freq = usrp_ask_freq = band_freq+offset_tune_freq
        self.usrp_DDC_freq = usrp_DDC_freq = np.round(usrp_ask_freq/usrp_clk_rate* 2**32)/2**32 * usrp_clk_rate
        self.fine_tuner_freq = fine_tuner_freq = 0
        self.coarse_tuner_freq = coarse_tuner_freq = 0
        self.samp_rate = samp_rate = 250000
        self.lo_freq = lo_freq = usrp_DDC_freq + coarse_tuner_freq + fine_tuner_freq - offset_tune_freq
        self.record_check_box = record_check_box = False
        self.file_name_string = file_name_string = str(int(time.mktime(time.gmtime())))+"UTC_"+'{:.6f}'.format(lo_freq)+"Hz"+"_"+str(int(samp_rate/100))+"sps"+".raw"
        self.variable_function_probe_0 = variable_function_probe_0 = 0
        self.file_name = file_name = file_name_string if record_check_box==True else "/dev/null"
        self.volume = volume = 5.0
        self.rx_power_label = rx_power_label = '{:.1f}'.format(variable_function_probe_0)
        self.lo_freq_label = lo_freq_label = '{:.6f}'.format(lo_freq)
        self.gain_offset_dB = gain_offset_dB = 18.86
        self.filter_taps = filter_taps = firdes.low_pass(1.0,2.5,0.1,0.02,firdes.WIN_HAMMING)
        self.filename_label = filename_label = file_name
        self.cw_filter_bw = cw_filter_bw = 1000
        self.RX_power_offset_dB = RX_power_offset_dB = -35.2

        ##################################################
        # Blocks
        ##################################################
        self._volume_layout = Qt.QVBoxLayout()
        self._volume_knob = Qwt.QwtKnob()
        self._volume_knob.setRange(0, 10.0, 1.0)
        self._volume_knob.setValue(self.volume)
        self._volume_knob.valueChanged.connect(self.set_volume)
        self._volume_layout.addWidget(self._volume_knob)
        self._volume_label = Qt.QLabel("Volume")
        self._volume_label.setAlignment(Qt.Qt.AlignTop | Qt.Qt.AlignHCenter)
        self._volume_layout.addWidget(self._volume_label)
        self.top_grid_layout.addLayout(self._volume_layout, 5,6,1,1)
        self._cw_filter_bw_options = (100, 500, 1000, )
        self._cw_filter_bw_labels = ("100 Hz", "500 Hz", "1 kHz", )
        self._cw_filter_bw_tool_bar = Qt.QToolBar(self)
        self._cw_filter_bw_tool_bar.addWidget(Qt.QLabel("CW Filter BW"+": "))
        self._cw_filter_bw_combo_box = Qt.QComboBox()
        self._cw_filter_bw_tool_bar.addWidget(self._cw_filter_bw_combo_box)
        for label in self._cw_filter_bw_labels: self._cw_filter_bw_combo_box.addItem(label)
        self._cw_filter_bw_callback = lambda i: Qt.QMetaObject.invokeMethod(self._cw_filter_bw_combo_box, "setCurrentIndex", Qt.Q_ARG("int", self._cw_filter_bw_options.index(i)))
        self._cw_filter_bw_callback(self.cw_filter_bw)
        self._cw_filter_bw_combo_box.currentIndexChanged.connect(
        	lambda i: self.set_cw_filter_bw(self._cw_filter_bw_options[i]))
        self.top_grid_layout.addWidget(self._cw_filter_bw_tool_bar, 5,5,1,1)
        self.blocks_probe_signal_x_0 = blocks.probe_signal_f()
        def _variable_function_probe_0_probe():
            while True:
                val = self.blocks_probe_signal_x_0.level()
                try:
                    self.set_variable_function_probe_0(val)
                except AttributeError:
                    pass
                time.sleep(1.0 / (5))
        _variable_function_probe_0_thread = threading.Thread(target=_variable_function_probe_0_probe)
        _variable_function_probe_0_thread.daemon = True
        _variable_function_probe_0_thread.start()
        self.uhd_usrp_source_0 = uhd.usrp_source(
        	",".join(("", "addr=192.168.40.2")),
        	uhd.stream_args(
        		cpu_format="fc32",
        		channels=range(1),
        	),
        )
        self.uhd_usrp_source_0.set_subdev_spec("B:A", 0)
        self.uhd_usrp_source_0.set_samp_rate(samp_rate)
        self.uhd_usrp_source_0.set_center_freq(usrp_ask_freq, 0)
        self.uhd_usrp_source_0.set_gain(6, 0)
        self._rx_power_label_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._rx_power_label_formatter = None
        else:
          self._rx_power_label_formatter = lambda x: x
        
        self._rx_power_label_tool_bar.addWidget(Qt.QLabel("RX Power (dBm)"+": "))
        self._rx_power_label_label = Qt.QLabel(str(self._rx_power_label_formatter(self.rx_power_label)))
        self._rx_power_label_tool_bar.addWidget(self._rx_power_label_label)
        self.top_grid_layout.addWidget(self._rx_power_label_tool_bar, 4,7,1,1)
          
        _record_check_box_check_box = Qt.QCheckBox("Record")
        self._record_check_box_choices = {True: True, False: False}
        self._record_check_box_choices_inv = dict((v,k) for k,v in self._record_check_box_choices.iteritems())
        self._record_check_box_callback = lambda i: Qt.QMetaObject.invokeMethod(_record_check_box_check_box, "setChecked", Qt.Q_ARG("bool", self._record_check_box_choices_inv[i]))
        self._record_check_box_callback(self.record_check_box)
        _record_check_box_check_box.stateChanged.connect(lambda i: self.set_record_check_box(self._record_check_box_choices[bool(i)]))
        self.top_grid_layout.addWidget(_record_check_box_check_box, 6,5,1,1)
        self.rational_resampler_xxx_0 = filter.rational_resampler_fff(
                interpolation=48000,
                decimation=2500,
                taps=None,
                fractional_bw=None,
        )
        self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c(
        	4096, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	usrp_DDC_freq, #fc
        	samp_rate, #bw
        	"Band Waterfall", #name
                1 #number of inputs
        )
        self.qtgui_waterfall_sink_x_0.set_update_time(0.10)
        self.qtgui_waterfall_sink_x_0.enable_grid(False)
        
        if complex == type(float()):
          self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True)
        
        labels = ["", "", "", "", "",
                  "", "", "", "", ""]
        colors = [5, 0, 0, 0, 0,
                  0, 0, 0, 0, 0]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i])
            self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i])
        
        self.qtgui_waterfall_sink_x_0.set_intensity_range(-100, -70)
        
        self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(self.qtgui_waterfall_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_win, 4,0,3,5)
        self.qtgui_freq_sink_x_0_0 = qtgui.freq_sink_c(
        	1024, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	lo_freq, #fc
        	samp_rate/100, #bw
        	str(samp_rate/100) + " Hz Channel Spectrum", #name
        	2 #number of inputs
        )
        self.qtgui_freq_sink_x_0_0.set_update_time(0.10)
        self.qtgui_freq_sink_x_0_0.set_y_axis(-120, -70)
        self.qtgui_freq_sink_x_0_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "")
        self.qtgui_freq_sink_x_0_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0_0.enable_grid(True)
        self.qtgui_freq_sink_x_0_0.set_fft_average(1.0)
        
        if complex == type(float()):
          self.qtgui_freq_sink_x_0_0.set_plot_pos_half(not True)
        
        labels = ["", "", "", "", "",
                  "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        colors = ["blue", "red", "green", "black", "cyan",
                  "magenta", "yellow", "dark red", "dark green", "dark blue"]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(2):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0_0.set_line_alpha(i, alphas[i])
        
        self._qtgui_freq_sink_x_0_0_win = sip.wrapinstance(self.qtgui_freq_sink_x_0_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_0_win, 0,5,3,5)
        self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(
        	4096, #size
        	firdes.WIN_BLACKMAN_hARRIS, #wintype
        	usrp_DDC_freq, #fc
        	samp_rate, #bw
        	"Band Spectrum", #name
        	1 #number of inputs
        )
        self.qtgui_freq_sink_x_0.set_update_time(0.10)
        self.qtgui_freq_sink_x_0.set_y_axis(-110, -60)
        self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "")
        self.qtgui_freq_sink_x_0.enable_autoscale(False)
        self.qtgui_freq_sink_x_0.enable_grid(True)
        self.qtgui_freq_sink_x_0.set_fft_average(0.2)
        
        if complex == type(float()):
          self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)
        
        labels = ["", "", "", "", "",
                  "", "", "", "", ""]
        widths = [1, 1, 1, 1, 1,
                  1, 1, 1, 1, 1]
        colors = ["blue", "red", "green", "black", "cyan",
                  "magenta", "yellow", "dark red", "dark green", "dark blue"]
        alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
                  1.0, 1.0, 1.0, 1.0, 1.0]
        for i in xrange(1):
            if len(labels[i]) == 0:
                self.qtgui_freq_sink_x_0.set_line_label(i, "Data {0}".format(i))
            else:
                self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])
            self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])
            self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])
            self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])
        
        self._qtgui_freq_sink_x_0_win = sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)
        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win, 0,0,3,5)
        self.low_pass_filter_0_0 = filter.fir_filter_ccf(1, firdes.low_pass(
        	1, samp_rate/100, 0.9*cw_filter_bw, 0.1*cw_filter_bw, firdes.WIN_BLACKMAN, 6.76))
        self.low_pass_filter_0 = filter.fir_filter_ccf(1, firdes.low_pass(
        	10**(gain_offset_dB/20), samp_rate, 100E3, 20E3, firdes.WIN_HAMMING, 6.76))
        self._lo_freq_label_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._lo_freq_label_formatter = None
        else:
          self._lo_freq_label_formatter = lambda x: x
        
        self._lo_freq_label_tool_bar.addWidget(Qt.QLabel("LO Freq (Hz)"+": "))
        self._lo_freq_label_label = Qt.QLabel(str(self._lo_freq_label_formatter(self.lo_freq_label)))
        self._lo_freq_label_tool_bar.addWidget(self._lo_freq_label_label)
        self.top_grid_layout.addWidget(self._lo_freq_label_tool_bar, 4,6,1,1)
          
        self.hilbert_fc_0_0 = filter.hilbert_fc(65, firdes.WIN_HAMMING, 6.76)
        self.hilbert_fc_0 = filter.hilbert_fc(65, firdes.WIN_HAMMING, 6.76)
        self.freq_xlating_fir_filter_xxx_0 = filter.freq_xlating_fir_filter_ccc(10, (filter_taps), lo_freq - usrp_DDC_freq, samp_rate)
        self.fir_filter_xxx_0_0_0 = filter.fir_filter_ccc(10, (filter_taps))
        self.fir_filter_xxx_0_0_0.declare_sample_delay(0)
        self._fine_tuner_freq_layout = Qt.QVBoxLayout()
        self._fine_tuner_freq_tool_bar = Qt.QToolBar(self)
        self._fine_tuner_freq_layout.addWidget(self._fine_tuner_freq_tool_bar)
        self._fine_tuner_freq_tool_bar.addWidget(Qt.QLabel("Fine Tuner (Hz)"+": "))
        class qwt_counter_pyslot(Qwt.QwtCounter):
            def __init__(self, parent=None):
                Qwt.QwtCounter.__init__(self, parent)
            @pyqtSlot('double')
            def setValue(self, value):
                super(Qwt.QwtCounter, self).setValue(value)
        self._fine_tuner_freq_counter = qwt_counter_pyslot()
        self._fine_tuner_freq_counter.setRange(-500, 500, 1)
        self._fine_tuner_freq_counter.setNumButtons(2)
        self._fine_tuner_freq_counter.setValue(self.fine_tuner_freq)
        self._fine_tuner_freq_tool_bar.addWidget(self._fine_tuner_freq_counter)
        self._fine_tuner_freq_counter.valueChanged.connect(self.set_fine_tuner_freq)
        self._fine_tuner_freq_slider = Qwt.QwtSlider(None, Qt.Qt.Horizontal, Qwt.QwtSlider.BottomScale, Qwt.QwtSlider.BgSlot)
        self._fine_tuner_freq_slider.setRange(-500, 500, 1)
        self._fine_tuner_freq_slider.setValue(self.fine_tuner_freq)
        self._fine_tuner_freq_slider.setMinimumWidth(200)
        self._fine_tuner_freq_slider.valueChanged.connect(self.set_fine_tuner_freq)
        self._fine_tuner_freq_layout.addWidget(self._fine_tuner_freq_slider)
        self.top_grid_layout.addLayout(self._fine_tuner_freq_layout, 3,5,1,5)
        self._filename_label_tool_bar = Qt.QToolBar(self)
        
        if None:
          self._filename_label_formatter = None
        else:
          self._filename_label_formatter = lambda x: x
        
        self._filename_label_tool_bar.addWidget(Qt.QLabel("File Name"+": "))
        self._filename_label_label = Qt.QLabel(str(self._filename_label_formatter(self.filename_label)))
        self._filename_label_tool_bar.addWidget(self._filename_label_label)
        self.top_grid_layout.addWidget(self._filename_label_tool_bar, 6,6,1,3)
          
        self._coarse_tuner_freq_layout = Qt.QVBoxLayout()
        self._coarse_tuner_freq_tool_bar = Qt.QToolBar(self)
        self._coarse_tuner_freq_layout.addWidget(self._coarse_tuner_freq_tool_bar)
        self._coarse_tuner_freq_tool_bar.addWidget(Qt.QLabel("Coarse Tuner (Hz)"+": "))
        class qwt_counter_pyslot(Qwt.QwtCounter):
            def __init__(self, parent=None):
                Qwt.QwtCounter.__init__(self, parent)
            @pyqtSlot('double')
            def setValue(self, value):
                super(Qwt.QwtCounter, self).setValue(value)
        self._coarse_tuner_freq_counter = qwt_counter_pyslot()
        self._coarse_tuner_freq_counter.setRange(-samp_rate/2, samp_rate/2, 100)
        self._coarse_tuner_freq_counter.setNumButtons(2)
        self._coarse_tuner_freq_counter.setValue(self.coarse_tuner_freq)
        self._coarse_tuner_freq_tool_bar.addWidget(self._coarse_tuner_freq_counter)
        self._coarse_tuner_freq_counter.valueChanged.connect(self.set_coarse_tuner_freq)
        self._coarse_tuner_freq_slider = Qwt.QwtSlider(None, Qt.Qt.Horizontal, Qwt.QwtSlider.BottomScale, Qwt.QwtSlider.BgSlot)
        self._coarse_tuner_freq_slider.setRange(-samp_rate/2, samp_rate/2, 100)
        self._coarse_tuner_freq_slider.setValue(self.coarse_tuner_freq)
        self._coarse_tuner_freq_slider.setMinimumWidth(50)
        self._coarse_tuner_freq_slider.valueChanged.connect(self.set_coarse_tuner_freq)
        self._coarse_tuner_freq_layout.addWidget(self._coarse_tuner_freq_slider)
        self.top_grid_layout.addLayout(self._coarse_tuner_freq_layout, 3,0,1,5)
        self.blocks_null_sink_1_0_0 = blocks.null_sink(gr.sizeof_float*1)
        self.blocks_null_sink_1_0 = blocks.null_sink(gr.sizeof_float*1)
        self.blocks_nlog10_ff_0 = blocks.nlog10_ff(10, 1, RX_power_offset_dB)
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_integrate_xx_0 = blocks.integrate_ff(500)
        self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_gr_complex*1, file_name, False)
        self.blocks_file_sink_0.set_unbuffered(False)
        self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1)
        self.blocks_complex_to_float_1_0 = blocks.complex_to_float(1)
        self.blocks_complex_to_float_0_0 = blocks.complex_to_float(1)
        self.blocks_complex_to_float_0 = blocks.complex_to_float(1)
        self.blocks_add_xx_0 = blocks.add_vff(1)
        self._band_freq_options = [1.84E6, 3.598E6, 7.055E6, 2.5E6, 5.0E6, 10.0E6]
        self._band_freq_labels = ["160m", "80m", "40m", "2.5 MHz", "5 MHz", "10 MHz"]
        self._band_freq_tool_bar = Qt.QToolBar(self)
        self._band_freq_tool_bar.addWidget(Qt.QLabel("Band"+": "))
        self._band_freq_combo_box = Qt.QComboBox()
        self._band_freq_tool_bar.addWidget(self._band_freq_combo_box)
        for label in self._band_freq_labels: self._band_freq_combo_box.addItem(label)
        self._band_freq_callback = lambda i: Qt.QMetaObject.invokeMethod(self._band_freq_combo_box, "setCurrentIndex", Qt.Q_ARG("int", self._band_freq_options.index(i)))
        self._band_freq_callback(self.band_freq)
        self._band_freq_combo_box.currentIndexChanged.connect(
        	lambda i: self.set_band_freq(self._band_freq_options[i]))
        self.top_grid_layout.addWidget(self._band_freq_tool_bar, 4,5,1,1)
        self.audio_sink_0 = audio.sink(48000, "", True)
        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate/100, analog.GR_COS_WAVE, 600, 1, 0)
        self.analog_agc3_xx_0 = analog.agc3_cc(1e-1, 1e-4, volume/100, 1, 1)
        self.analog_agc3_xx_0.set_max_gain(2**16)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.freq_xlating_fir_filter_xxx_0, 0), (self.fir_filter_xxx_0_0_0, 0))
        self.connect((self.uhd_usrp_source_0, 0), (self.low_pass_filter_0, 0))
        self.connect((self.fir_filter_xxx_0_0_0, 0), (self.blocks_file_sink_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.qtgui_freq_sink_x_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.freq_xlating_fir_filter_xxx_0, 0))
        self.connect((self.fir_filter_xxx_0_0_0, 0), (self.low_pass_filter_0_0, 0))
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_multiply_xx_0, 0))
        self.connect((self.low_pass_filter_0_0, 0), (self.blocks_multiply_xx_0, 1))
        self.connect((self.low_pass_filter_0_0, 0), (self.blocks_complex_to_mag_squared_0, 0))
        self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.blocks_integrate_xx_0, 0))
        self.connect((self.blocks_integrate_xx_0, 0), (self.blocks_nlog10_ff_0, 0))
        self.connect((self.blocks_nlog10_ff_0, 0), (self.blocks_probe_signal_x_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.qtgui_waterfall_sink_x_0, 0))
        self.connect((self.blocks_multiply_xx_0, 0), (self.analog_agc3_xx_0, 0))
        self.connect((self.analog_agc3_xx_0, 0), (self.blocks_complex_to_float_1_0, 0))
        self.connect((self.fir_filter_xxx_0_0_0, 0), (self.qtgui_freq_sink_x_0_0, 0))
        self.connect((self.blocks_add_xx_0, 0), (self.rational_resampler_xxx_0, 0))
        self.connect((self.rational_resampler_xxx_0, 0), (self.audio_sink_0, 0))
        self.connect((self.blocks_complex_to_float_0, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.blocks_complex_to_float_0_0, 1), (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_complex_to_float_0_0, 0), (self.blocks_null_sink_1_0_0, 0))
        self.connect((self.blocks_complex_to_float_0, 1), (self.blocks_null_sink_1_0, 0))
        self.connect((self.blocks_complex_to_float_1_0, 1), (self.hilbert_fc_0, 0))
        self.connect((self.hilbert_fc_0, 0), (self.blocks_complex_to_float_0, 0))
        self.connect((self.blocks_complex_to_float_1_0, 0), (self.hilbert_fc_0_0, 0))
        self.connect((self.hilbert_fc_0_0, 0), (self.blocks_complex_to_float_0_0, 0))
        self.connect((self.low_pass_filter_0_0, 0), (self.qtgui_freq_sink_x_0_0, 1))
Exemple #55
0
def run_test(seed,blocksize):
        tb = gr.top_block()

	##################################################
	# Variables
	##################################################
	M = 2
	K = 1
	P = 2
	h = (1.0*K)/P
	L = 3
	Q = 4
        frac = 0.99
        f = trellis.fsm(P,M,L)

        # CPFSK signals
        #p = numpy.ones(Q)/(2.0)
        #q = numpy.cumsum(p)/(1.0*Q)

        # GMSK signals
        BT=0.3;
        tt=numpy.arange(0,L*Q)/(1.0*Q)-L/2.0;
        #print tt
        p=(0.5*scipy.special.erfc(2*math.pi*BT*(tt-0.5)/math.sqrt(math.log(2.0))/math.sqrt(2.0))-0.5*scipy.special.erfc(2*math.pi*BT*(tt+0.5)/math.sqrt(math.log(2.0))/math.sqrt(2.0)))/2.0;
        p=p/sum(p)*Q/2.0;
        #print p
        q=numpy.cumsum(p)/Q;
        q=q/q[-1]/2.0;
        #print q

        (f0T,SS,S,F,Sf,Ff,N) = fsm_utils.make_cpm_signals(K,P,M,L,q,frac)
        #print N
        #print Ff
        Ffa = numpy.insert(Ff,Q,numpy.zeros(N),axis=0)
        #print Ffa
        MF = numpy.fliplr(numpy.transpose(Ffa))
        #print MF
        E = numpy.sum(numpy.abs(Sf)**2,axis=0)
        Es = numpy.sum(E)/f.O()
        #print Es

        constellation = numpy.reshape(numpy.transpose(Sf),N*f.O())
        #print Ff
        #print Sf
        #print constellation
        #print numpy.max(numpy.abs(SS - numpy.dot(Ff , Sf)))

	EsN0_db = 10.0
        N0 =  Es * 10.0**(-(1.0*EsN0_db)/10.0)
        #N0 = 0.0
        #print N0
        head = 4
        tail = 4
        numpy.random.seed(seed*666)
        data = numpy.random.randint(0, M, head+blocksize+tail+1)
        #data = numpy.zeros(blocksize+1+head+tail,'int')
        for i in range(head):
            data[i]=0
        for i in range(tail+1):
            data[-i]=0



	##################################################
	# Blocks
	##################################################
	random_source_x_0 = blocks.vector_source_b(data.tolist(), False)
	digital_chunks_to_symbols_xx_0 = digital.chunks_to_symbols_bf((-1, 1), 1)
	filter_interp_fir_filter_xxx_0 = filter.interp_fir_filter_fff(Q, p)
	analog_frequency_modulator_fc_0 = analog.frequency_modulator_fc(2*math.pi*h*(1.0/Q))

	blocks_add_vxx_0 = blocks.add_vcc(1)
	analog_noise_source_x_0 = analog.noise_source_c(analog.GR_GAUSSIAN, (N0/2.0)**0.5, -long(seed))

	blocks_multiply_vxx_0 = blocks.multiply_vcc(1)
	analog_sig_source_x_0 = analog.sig_source_c(Q, analog.GR_COS_WAVE, -f0T, 1, 0)
        # only works for N=2, do it manually for N>2...
	filter_fir_filter_xxx_0_0 = filter.fir_filter_ccc(Q, MF[0].conjugate())
	filter_fir_filter_xxx_0_0_0 = filter.fir_filter_ccc(Q, MF[1].conjugate())
	blocks_streams_to_stream_0 = blocks.streams_to_stream(gr.sizeof_gr_complex*1, int(N))
	blocks_skiphead_0 = blocks.skiphead(gr.sizeof_gr_complex*1, int(N*(1+0)))
	viterbi = trellis.viterbi_combined_cb(f, head+blocksize+tail, 0, -1, int(N),
					      constellation, digital.TRELLIS_EUCLIDEAN)

        blocks_vector_sink_x_0 = blocks.vector_sink_b()

	##################################################
	# Connections
	##################################################
	tb.connect((random_source_x_0, 0), (digital_chunks_to_symbols_xx_0, 0))
	tb.connect((digital_chunks_to_symbols_xx_0, 0), (filter_interp_fir_filter_xxx_0, 0))
	tb.connect((filter_interp_fir_filter_xxx_0, 0), (analog_frequency_modulator_fc_0, 0))
	tb.connect((analog_frequency_modulator_fc_0, 0), (blocks_add_vxx_0, 0))
	tb.connect((analog_noise_source_x_0, 0), (blocks_add_vxx_0, 1))
	tb.connect((blocks_add_vxx_0, 0), (blocks_multiply_vxx_0, 0))
	tb.connect((analog_sig_source_x_0, 0), (blocks_multiply_vxx_0, 1))
	tb.connect((blocks_multiply_vxx_0, 0), (filter_fir_filter_xxx_0_0, 0))
	tb.connect((blocks_multiply_vxx_0, 0), (filter_fir_filter_xxx_0_0_0, 0))
	tb.connect((filter_fir_filter_xxx_0_0, 0), (blocks_streams_to_stream_0, 0))
	tb.connect((filter_fir_filter_xxx_0_0_0, 0), (blocks_streams_to_stream_0, 1))
	tb.connect((blocks_streams_to_stream_0, 0), (blocks_skiphead_0, 0))
	tb.connect((blocks_skiphead_0, 0), (viterbi, 0))
	tb.connect((viterbi, 0), (blocks_vector_sink_x_0, 0))


        tb.run()
        dataest = blocks_vector_sink_x_0.data()
        #print data
        #print numpy.array(dataest)
        perr = 0
        err = 0
        for i in range(blocksize):
          if data[head+i] != dataest[head+i]:
            #print i
            err += 1
        if err != 0 :
          perr = 1
        return (err,perr)
Exemple #56
0
    def __init__(self, fft_length, cp_length, snr, kstime, logging):
        ''' Maximum Likelihood OFDM synchronizer:
        J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation
        of Time and Frequency Offset in OFDM Systems," IEEE Trans.
        Signal Processing, vol. 45, no. 7, pp. 1800-1805, 1997.
        '''

        gr.hier_block2.__init__(self, "ofdm_sync_ml",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature

        self.input = blocks.add_const_cc(0)

        SNR = 10.0**(snr / 10.0)
        rho = SNR / (SNR + 1.0)
        symbol_length = fft_length + cp_length

        # ML Sync

        # Energy Detection from ML Sync

        self.connect(self, self.input)

        # Create a delay line
        self.delay = blocks.delay(gr.sizeof_gr_complex, fft_length)
        self.connect(self.input, self.delay)

        # magnitude squared blocks
        self.magsqrd1 = blocks.complex_to_mag_squared()
        self.magsqrd2 = blocks.complex_to_mag_squared()
        self.adder = blocks.add_ff()

        moving_sum_taps = [rho / 2 for i in range(cp_length)]
        self.moving_sum_filter = filter.fir_filter_fff(1,moving_sum_taps)

        self.connect(self.input,self.magsqrd1)
        self.connect(self.delay,self.magsqrd2)
        self.connect(self.magsqrd1,(self.adder,0))
        self.connect(self.magsqrd2,(self.adder,1))
        self.connect(self.adder,self.moving_sum_filter)


        # Correlation from ML Sync
        self.conjg = blocks.conjugate_cc();
        self.mixer = blocks.multiply_cc();

        movingsum2_taps = [1.0 for i in range(cp_length)]
        self.movingsum2 = filter.fir_filter_ccf(1,movingsum2_taps)

        # Correlator data handler
        self.c2mag = blocks.complex_to_mag()
        self.angle = blocks.complex_to_arg()
        self.connect(self.input,(self.mixer,1))
        self.connect(self.delay,self.conjg,(self.mixer,0))
        self.connect(self.mixer,self.movingsum2,self.c2mag)
        self.connect(self.movingsum2,self.angle)

        # ML Sync output arg, need to find maximum point of this
        self.diff = blocks.sub_ff()
        self.connect(self.c2mag,(self.diff,0))
        self.connect(self.moving_sum_filter,(self.diff,1))

        #ML measurements input to sampler block and detect
        self.f2c = blocks.float_to_complex()
        self.pk_detect = blocks.peak_detector_fb(0.2, 0.25, 30, 0.0005)
        self.sample_and_hold = blocks.sample_and_hold_ff()

        # use the sync loop values to set the sampler and the NCO
        #     self.diff = theta
        #     self.angle = epsilon

        self.connect(self.diff, self.pk_detect)

        # The DPLL corrects for timing differences between CP correlations
        use_dpll = 0
        if use_dpll:
            self.dpll = gr.dpll_bb(float(symbol_length),0.01)
            self.connect(self.pk_detect, self.dpll)
            self.connect(self.dpll, (self.sample_and_hold,1))
        else:
            self.connect(self.pk_detect, (self.sample_and_hold,1))

        self.connect(self.angle, (self.sample_and_hold,0))

        ################################
        # correlate against known symbol
        # This gives us the same timing signal as the PN sync block only on the preamble
        # we don't use the signal generated from the CP correlation because we don't want
        # to readjust the timing in the middle of the packet or we ruin the equalizer settings.
        kstime = [k.conjugate() for k in kstime]
        kstime.reverse()
        self.kscorr = filter.fir_filter_ccc(1, kstime)
        self.corrmag = blocks.complex_to_mag_squared()
        self.div = blocks.divide_ff()

        # The output signature of the correlation has a few spikes because the rest of the
        # system uses the repeated preamble symbol. It needs to work that generically if
        # anyone wants to use this against a WiMAX-like signal since it, too, repeats.
        # The output theta of the correlator above is multiplied with this correlation to
        # identify the proper peak and remove other products in this cross-correlation
        self.threshold_factor = 0.1
        self.slice = blocks.threshold_ff(self.threshold_factor, self.threshold_factor, 0)
        self.f2b = blocks.float_to_char()
        self.b2f = blocks.char_to_float()
        self.mul = blocks.multiply_ff()

        # Normalize the power of the corr output by the energy. This is not really needed
        # and could be removed for performance, but it makes for a cleaner signal.
        # if this is removed, the threshold value needs adjustment.
        self.connect(self.input, self.kscorr, self.corrmag, (self.div,0))
        self.connect(self.moving_sum_filter, (self.div,1))

        self.connect(self.div, (self.mul,0))
        self.connect(self.pk_detect, self.b2f, (self.mul,1))
        self.connect(self.mul, self.slice)

        # Set output signals
        #    Output 0: fine frequency correction value
        #    Output 1: timing signal
        self.connect(self.sample_and_hold, (self,0))
        self.connect(self.slice, self.f2b, (self,1))


        if logging:
            self.connect(self.moving_sum_filter, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-energy_f.dat"))
            self.connect(self.diff, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-theta_f.dat"))
            self.connect(self.angle, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-epsilon_f.dat"))
            self.connect(self.corrmag, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-corrmag_f.dat"))
            self.connect(self.kscorr, blocks.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-kscorr_c.dat"))
            self.connect(self.div, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-div_f.dat"))
            self.connect(self.mul, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-mul_f.dat"))
            self.connect(self.slice, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-slice_f.dat"))
            self.connect(self.pk_detect, blocks.file_sink(gr.sizeof_char, "ofdm_sync_ml-peaks_b.dat"))
            if use_dpll:
                self.connect(self.dpll, blocks.file_sink(gr.sizeof_char, "ofdm_sync_ml-dpll_b.dat"))

            self.connect(self.sample_and_hold, blocks.file_sink(gr.sizeof_float, "ofdm_sync_ml-sample_and_hold_f.dat"))
            self.connect(self.input, blocks.file_sink(gr.sizeof_gr_complex, "ofdm_sync_ml-input_c.dat"))
Exemple #57
0
    def __init__(self):
        grc_wxgui.top_block_gui.__init__(self, title="Chu")
        _icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-grc.png"
        self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

        ##################################################
        # Variables
        ##################################################
        self.samp_rate = samp_rate = 1200000
        self.upconverter_lo_freq = upconverter_lo_freq = 125000000
        self.space_tone = space_tone = 2025
        self.offset = offset = 100000
        self.mark_tone = mark_tone = 2225
        self.gain = gain = 10
        self.decimation = decimation = samp_rate / 48000
        self.chu_freq = chu_freq = 3330000
        self.channel_rate = channel_rate = 4800

        ##################################################
        # Blocks
        ##################################################
        self.nb = self.nb = wx.Notebook(self.GetWin(), style=wx.NB_TOP)
        self.nb.AddPage(grc_wxgui.Panel(self.nb), "48 kHz")
        self.nb.AddPage(grc_wxgui.Panel(self.nb), "4.8 kHz")
        self.nb.AddPage(grc_wxgui.Panel(self.nb), "Data scope")
        self.GridAdd(self.nb, 2, 0, 1, 1)
        _gain_sizer = wx.BoxSizer(wx.VERTICAL)
        self._gain_text_box = forms.text_box(
        	parent=self.GetWin(),
        	sizer=_gain_sizer,
        	value=self.gain,
        	callback=self.set_gain,
        	label="USB tuner gain",
        	converter=forms.float_converter(),
        	proportion=0,
        )
        self._gain_slider = forms.slider(
        	parent=self.GetWin(),
        	sizer=_gain_sizer,
        	value=self.gain,
        	callback=self.set_gain,
        	minimum=0,
        	maximum=50,
        	num_steps=125,
        	style=wx.SL_HORIZONTAL,
        	cast=float,
        	proportion=1,
        )
        self.GridAdd(_gain_sizer, 1, 0, 1, 1)
        self._chu_freq_chooser = forms.radio_buttons(
        	parent=self.GetWin(),
        	value=self.chu_freq,
        	callback=self.set_chu_freq,
        	label="CHU frequency",
        	choices=[3330000, 7850000, 14670000],
        	labels=['3.33 MHz', '7.85 MHz', '14.67 MHz'],
        	style=wx.RA_HORIZONTAL,
        )
        self.GridAdd(self._chu_freq_chooser, 0, 0, 1, 1)
        self.wxgui_waterfallsink2_1 = waterfallsink2.waterfall_sink_c(
        	self.nb.GetPage(1).GetWin(),
        	baseband_freq=(mark_tone + space_tone) / 2,
        	dynamic_range=50,
        	ref_level=-20,
        	ref_scale=2.0,
        	sample_rate=channel_rate,
        	fft_size=512,
        	fft_rate=15,
        	average=False,
        	avg_alpha=None,
        	title="Waterfall Plot",
        )
        self.nb.GetPage(1).Add(self.wxgui_waterfallsink2_1.win)
        self.wxgui_waterfallsink2_0 = waterfallsink2.waterfall_sink_c(
        	self.nb.GetPage(0).GetWin(),
        	baseband_freq=chu_freq,
        	dynamic_range=50,
        	ref_level=-60,
        	ref_scale=2.0,
        	sample_rate=samp_rate / decimation,
        	fft_size=2048,
        	fft_rate=15,
        	average=False,
        	avg_alpha=None,
        	title="Waterfall Plot",
        	win=window.hamming,
        )
        self.nb.GetPage(0).Add(self.wxgui_waterfallsink2_0.win)
        self.wxgui_scopesink2_0 = scopesink2.scope_sink_f(
        	self.nb.GetPage(2).GetWin(),
        	title="Scope Plot",
        	sample_rate=channel_rate,
        	v_scale=1,
        	v_offset=0,
        	t_scale=0.050,
        	ac_couple=False,
        	xy_mode=False,
        	num_inputs=2,
        	trig_mode=wxgui.TRIG_MODE_AUTO,
        	y_axis_label="Counts",
        )
        self.nb.GetPage(2).Add(self.wxgui_scopesink2_0.win)
        self.root_raised_cosine_filter_0 = filter.fir_filter_fff(1, firdes.root_raised_cosine(
        	1, channel_rate, 300, 0.35, 100))
        self.osmosdr_source_0 = osmosdr.source( args="numchan=" + str(1) + " " + "" )
        self.osmosdr_source_0.set_sample_rate(samp_rate)
        self.osmosdr_source_0.set_center_freq(chu_freq - offset + upconverter_lo_freq, 0)
        self.osmosdr_source_0.set_freq_corr(0, 0)
        self.osmosdr_source_0.set_dc_offset_mode(0, 0)
        self.osmosdr_source_0.set_iq_balance_mode(0, 0)
        self.osmosdr_source_0.set_gain_mode(0, 0)
        self.osmosdr_source_0.set_gain(gain, 0)
        self.osmosdr_source_0.set_if_gain(20, 0)
        self.osmosdr_source_0.set_bb_gain(20, 0)
        self.osmosdr_source_0.set_antenna("", 0)
        self.osmosdr_source_0.set_bandwidth(0, 0)
          
        self.low_pass_filter_1 = filter.fir_filter_ccf(10, firdes.low_pass(
        	1000, samp_rate / 25, 200, 50, firdes.WIN_HAMMING, 6.76))
        self.low_pass_filter_0 = filter.fir_filter_ccf(decimation, firdes.low_pass(
        	1, samp_rate, 20000, 5000, firdes.WIN_HAMMING, 6.76))
        self.ham_chu_decode_0 = ham.chu_decode()
        self.digital_binary_slicer_fb_0 = digital.binary_slicer_fb()
        self.blocks_multiply_xx_2 = blocks.multiply_vcc(1)
        self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)
        self.blocks_complex_to_real_0 = blocks.complex_to_real(1)
        self.blocks_char_to_float_0 = blocks.char_to_float(1, 0.5)
        self.blocks_add_const_vxx_0 = blocks.add_const_vff((-1, ))
        self.band_pass_filter_0 = filter.fir_filter_ccc(1, firdes.complex_band_pass(
        	1, samp_rate / decimation, 200, 2800, 200, firdes.WIN_HAMMING, 6.76))
        self.audio_sink_0_0 = audio.sink(48000, "", True)
        self.analog_sig_source_x_1 = analog.sig_source_c(samp_rate / decimation, analog.GR_COS_WAVE, -(space_tone + mark_tone) / 2, 1, 0)
        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, -offset, 1, 0)
        self.analog_quadrature_demod_cf_0 = analog.quadrature_demod_cf(channel_rate / (3.1416*(mark_tone - space_tone)))
        self.analog_pll_carriertracking_cc_0 = analog.pll_carriertracking_cc(3.1416 / 500, 1.8, -1.8)
        self.analog_agc_xx_0 = analog.agc_ff(1e-1, 0.02, 1.0)
        self.analog_agc_xx_0.set_max_gain(65536)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.analog_sig_source_x_1, 0), (self.blocks_multiply_xx_2, 1))
        self.connect((self.analog_pll_carriertracking_cc_0, 0), (self.blocks_multiply_xx_2, 0))
        self.connect((self.analog_pll_carriertracking_cc_0, 0), (self.wxgui_waterfallsink2_0, 0))
        self.connect((self.low_pass_filter_0, 0), (self.analog_pll_carriertracking_cc_0, 0))
        self.connect((self.blocks_multiply_xx_0, 0), (self.low_pass_filter_0, 0))
        self.connect((self.analog_sig_source_x_0, 0), (self.blocks_multiply_xx_0, 1))
        self.connect((self.osmosdr_source_0, 0), (self.blocks_multiply_xx_0, 0))
        self.connect((self.low_pass_filter_1, 0), (self.wxgui_waterfallsink2_1, 0))
        self.connect((self.low_pass_filter_1, 0), (self.analog_quadrature_demod_cf_0, 0))
        self.connect((self.blocks_multiply_xx_2, 0), (self.low_pass_filter_1, 0))
        self.connect((self.band_pass_filter_0, 0), (self.blocks_complex_to_real_0, 0))
        self.connect((self.analog_agc_xx_0, 0), (self.audio_sink_0_0, 0))
        self.connect((self.analog_pll_carriertracking_cc_0, 0), (self.band_pass_filter_0, 0))
        self.connect((self.blocks_complex_to_real_0, 0), (self.analog_agc_xx_0, 0))
        self.connect((self.blocks_add_const_vxx_0, 0), (self.wxgui_scopesink2_0, 1))
        self.connect((self.blocks_char_to_float_0, 0), (self.blocks_add_const_vxx_0, 0))
        self.connect((self.digital_binary_slicer_fb_0, 0), (self.blocks_char_to_float_0, 0))
        self.connect((self.root_raised_cosine_filter_0, 0), (self.digital_binary_slicer_fb_0, 0))
        self.connect((self.root_raised_cosine_filter_0, 0), (self.wxgui_scopesink2_0, 0))
        self.connect((self.digital_binary_slicer_fb_0, 0), (self.ham_chu_decode_0, 0))
        self.connect((self.analog_quadrature_demod_cf_0, 0), (self.root_raised_cosine_filter_0, 0))