def __init__(self, parent, baseband_freq=0, y_per_div=10, ref_level=50, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size): gr.hier_block2.__init__(self, "waterfall_sink_f", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(0,0,0)) waterfall_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) self.s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size) self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size, max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) self.fft = gr.fft_vfc(self.fft_size, True, mywindow) self.c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) self.log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)) self.sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.connect(self, self.s2p, self.one_in_n, self.fft, self.c2mag, self.avg, self.log, self.sink) self.win = waterfall_window(self, parent, size=size) self.set_average(self.average)
def __init__(self, fg, parent, baseband_freq=0, ref_level=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None): waterfall_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size) self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size, max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)) sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.block_list = (s2p, self.one_in_n, fft, c2mag, self.avg, log, sink) self.reconnect( fg ) gr.hier_block.__init__(self, fg, s2p, sink) self.win = waterfall_window(self, parent, size=size, report=report, ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc) self.set_average(self.average)
def __init__(self, parent, baseband_freq=0, y_per_div=10, sc_y_per_div=0.5, sc_ref_level=40, ref_level=50, sample_rate=1, fft_size=512, fft_rate=15, average=False, avg_alpha=None, title='', size=default_ra_fftsink_size, peak_hold=False, ofunc=None, xydfunc=None): gr.hier_block2.__init__(self, "ra_fft_sink_f", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(0, 0, 0)) ra_fft_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq, y_per_div=y_per_div, sc_y_per_div=sc_y_per_div, sc_ref_level=sc_ref_level, ref_level=ref_level, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title, peak_hold=peak_hold, ofunc=ofunc, xydfunc=xydfunc) self.binwidth = float(sample_rate/2.0)/float(fft_size) s2p = gr.serial_to_parallel(gr.sizeof_float, fft_size) one_in_n = gr.keep_one_in_n(gr.sizeof_float * fft_size, max(1, int(sample_rate/fft_size/fft_rate))) mywindow = window.blackmanharris(fft_size) fft = gr.fft_vfc(fft_size, True, mywindow) c2mag = gr.complex_to_mag(fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, fft_size) log = gr.nlog10_ff(20, fft_size, -20*math.log10(fft_size)) sink = gr.message_sink(gr.sizeof_float * fft_size, self.msgq, True) self.connect (self, s2p, one_in_n, fft, c2mag, self.avg, log, sink) self.win = fft_window(self, parent, size=size) self.set_average(self.average)
def __init__(self, fg, parent, baseband_freq=0, y_per_div=10, ref_level=100, sample_rate=1, fft_size=512, fft_rate=20, average=False, avg_alpha=None, title='', size=default_fftsink_size): fft_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq, y_per_div=y_per_div, ref_level=ref_level, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) s2p = gr.serial_to_parallel(gr.sizeof_float, fft_size) one_in_n = gr.keep_one_in_n(gr.sizeof_float * fft_size, int(sample_rate/fft_size/fft_rate)) mywindow = window.blackmanharris(fft_size) fft = gr.fft_vfc(self.fft_size, True, mywindow) #fft = gr.fft_vfc(fft_size, True, True) c2mag = gr.complex_to_mag(fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, fft_size) log = gr.nlog10_ff(20, fft_size) sink = gr.file_descriptor_sink(gr.sizeof_float * fft_size, self.w_fd) fg.connect (s2p, one_in_n, fft, c2mag, self.avg, log, sink) gr.hier_block.__init__(self, fg, s2p, sink) self.fg = fg self.gl_fft_window(self)
def __init__(self, parent, baseband_freq=0, y_per_div=10, ref_level=50, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size, **kwargs): gr.hier_block2.__init__(self, "waterfall_sink_f", gr.io_signature(1, 1, gr.sizeof_float), gr.io_signature(0,0,0)) waterfall_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) self.s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size) self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size, max(1, int(self.sample_rate/self.fft_size/self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) self.fft = gr.fft_vfc(self.fft_size, True, mywindow) self.c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) self.log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size)) self.sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.connect(self, self.s2p, self.one_in_n, self.fft, self.c2mag, self.avg, self.log, self.sink) self.win = waterfall_window(self, parent, size=size) self.set_average(self.average)
def __init__(self, parent, baseband_freq=0, ref_level=0, sample_rate=1, fft_size=512, fft_rate=default_fft_rate, average=False, avg_alpha=None, title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None): gr.hier_block2.__init__(self, "waterfall_sink_c", gr.io_signature(1, 1, gr.sizeof_gr_complex), gr.io_signature(0, 0, 0)) waterfall_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq, sample_rate=sample_rate, fft_size=fft_size, fft_rate=fft_rate, average=average, avg_alpha=avg_alpha, title=title) s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size) self.one_in_n = gr.keep_one_in_n( gr.sizeof_gr_complex * self.fft_size, max(1, int(self.sample_rate / self.fft_size / self.fft_rate))) mywindow = window.blackmanharris(self.fft_size) fft = gr.fft_vcc(self.fft_size, True, mywindow) c2mag = gr.complex_to_mag(self.fft_size) self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size) log = gr.nlog10_ff(20, self.fft_size, -20 * math.log10(self.fft_size)) sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True) self.connect(self, s2p, self.one_in_n, fft, c2mag, self.avg, log, sink) self.win = waterfall_window(self, parent, size=size, report=report, ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc) self.set_average(self.average)
def test_003(self): block_size = 2 src_data = (0, 1000, 2000, 3000, 4000, 5000) expected_result = (0, 125, 250, 484.375, 718.75, 1048.828125) src = gr.vector_source_f(src_data) s2p = gr.serial_to_parallel(gr.sizeof_float, block_size) op = gr.single_pole_iir_filter_ff(0.125, block_size) p2s = gr.parallel_to_serial(gr.sizeof_float, block_size) dst = gr.vector_sink_f() self.tb.connect(src, s2p, op, p2s, dst) self.tb.run() result_data = dst.data() self.assertFloatTuplesAlmostEqual(expected_result, result_data, 3)
def test_003(self): block_size = 2 src_data = (0, 1000, 2000, 3000, 4000, 5000) expected_result = (0, 125, 250, 484.375, 718.75, 1048.828125) src = gr.vector_source_f(src_data) s2p = gr.serial_to_parallel(gr.sizeof_float, block_size) op = gr.single_pole_iir_filter_ff (0.125, block_size) p2s = gr.parallel_to_serial(gr.sizeof_float, block_size) dst = gr.vector_sink_f() self.fg.connect (src, s2p, op, p2s, dst) self.fg.run() result_data = dst.data() self.assertFloatTuplesAlmostEqual (expected_result, result_data, 3)
def test_003(self): block_size = 2 src_data = (complex(0,0), complex(1000,-1000), complex(2000,-2000), complex(3000,-3000), complex(4000,-4000), complex(5000,-5000)) expected_result = (complex(0,0), complex(125,-125), complex(250,-250), complex(484.375,-484.375), complex(718.75,-718.75), complex(1048.828125,-1048.828125)) src = gr.vector_source_c(src_data) s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, block_size) op = gr.single_pole_iir_filter_cc (0.125, block_size) p2s = gr.parallel_to_serial(gr.sizeof_gr_complex, block_size) dst = gr.vector_sink_c() self.fg.connect (src, s2p, op, p2s, dst) self.fg.run() result_data = dst.data() self.assertComplexTuplesAlmostEqual (expected_result, result_data, 3)
def test_cc_003(self): block_size = 2 src_data = (complex(0,0), complex(1000,-1000), complex(2000,-2000), complex(3000,-3000), complex(4000,-4000), complex(5000,-5000)) expected_result = (complex(0,0), complex(125,-125), complex(250,-250), complex(484.375,-484.375), complex(718.75,-718.75), complex(1048.828125,-1048.828125)) src = gr.vector_source_c(src_data) s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, block_size) op = filter.single_pole_iir_filter_cc(0.125, block_size) p2s = gr.parallel_to_serial(gr.sizeof_gr_complex, block_size) dst = gr.vector_sink_c() self.tb.connect(src, s2p, op, p2s, dst) self.tb.run() result_data = dst.data() self.assertComplexTuplesAlmostEqual(expected_result, result_data, 3)
def __init__(self, frame, panel, vbox, argv): stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) self.frame = frame self.panel = panel parser = OptionParser(option_class=eng_option) parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0), help="select USRP Rx side A or B (default=A)") parser.add_option( "-d", "--decim", type="int", default=16, help="set fgpa decimation rate to DECIM [default=%default]") parser.add_option("-f", "--freq", type="eng_float", default=None, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-Q", "--observing", type="eng_float", default=0.0, help="set observing frequency to FREQ") parser.add_option("-a", "--avg", type="eng_float", default=1.0, help="set spectral averaging alpha") parser.add_option("-V", "--favg", type="eng_float", default=2.0, help="set folder averaging alpha") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("-l", "--reflevel", type="eng_float", default=30.0, help="Set pulse display reference level") parser.add_option("-L", "--lowest", type="eng_float", default=1.5, help="Lowest valid frequency bin") parser.add_option("-e", "--longitude", type="eng_float", default=-76.02, help="Set Observer Longitude") parser.add_option("-c", "--latitude", type="eng_float", default=44.85, help="Set Observer Latitude") parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT") parser.add_option("-t", "--threshold", type="eng_float", default=2.5, help="pulsar threshold") parser.add_option("-p", "--lowpass", type="eng_float", default=100, help="Pulse spectra cutoff freq") parser.add_option("-P", "--prefix", default="./", help="File prefix") parser.add_option("-u", "--pulsefreq", type="eng_float", default=0.748, help="Observation pulse rate") parser.add_option("-D", "--dm", type="eng_float", default=1.0e-5, help="Dispersion Measure") parser.add_option("-O", "--doppler", type="eng_float", default=1.0, help="Doppler ratio") parser.add_option("-B", "--divbase", type="eng_float", default=20, help="Y/Div menu base") parser.add_option("-I", "--division", type="eng_float", default=100, help="Y/Div") parser.add_option("-A", "--audio_source", default="plughw:0,0", help="Audio input device spec") parser.add_option("-N", "--num_pulses", default=1, type="eng_float", help="Number of display pulses") (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.show_debug_info = True self.reflevel = options.reflevel self.divbase = options.divbase self.division = options.division self.audiodev = options.audio_source self.mult = int(options.num_pulses) # Low-pass cutoff for post-detector filter # Set to 100Hz usually, since lots of pulsars fit in this # range self.lowpass = options.lowpass # What is lowest valid frequency bin in post-detector FFT? # There's some pollution very close to DC self.lowest_freq = options.lowest # What (dB) threshold to use in determining spectral candidates self.threshold = options.threshold # Filename prefix for recording file self.prefix = options.prefix # Dispersion Measure (DM) self.dm = options.dm # Doppler shift, as a ratio # 1.0 == no doppler shift # 1.005 == a little negative shift # 0.995 == a little positive shift self.doppler = options.doppler # # Input frequency and observing frequency--not necessarily the # same thing, if we're looking at the IF of some downconverter # that's ahead of the USRP and daughtercard. This distinction # is important in computing the correct de-dispersion filter. # self.frequency = options.freq if options.observing <= 0: self.observing_freq = options.freq else: self.observing_freq = options.observing # build the graph self.u = usrp.source_c(decim_rate=options.decim) self.u.set_mux( usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) # # Recording file, in case we ever need to record baseband data # self.recording = gr.file_sink(gr.sizeof_char, "/dev/null") self.recording_state = False self.pulse_recording = gr.file_sink(gr.sizeof_short, "/dev/null") self.pulse_recording_state = False # # We come up with recording turned off, but the user may # request recording later on self.recording.close() self.pulse_recording.close() # # Need these two for converting 12-bit baseband signals to 8-bit # self.tofloat = gr.complex_to_float() self.tochar = gr.float_to_char() # Need this for recording pulses (post-detector) self.toshort = gr.float_to_short() # # The spectral measurer sets this when it has a valid # average spectral peak-to-peak distance # We can then use this to program the parameters for the epoch folder # # We set a sentimental value here self.pulse_freq = options.pulsefreq # Folder runs at this raw sample rate self.folder_input_rate = 20000 # Each pulse in the epoch folder is sampled at 128 times the nominal # pulse rate self.folding = 128 # # Try to find candidate parameters for rational resampler # save_i = 0 candidates = [] for i in range(20, 300): input_rate = self.folder_input_rate output_rate = int(self.pulse_freq * i) interp = gru.lcm(input_rate, output_rate) / input_rate decim = gru.lcm(input_rate, output_rate) / output_rate if (interp < 500 and decim < 250000): candidates.append(i) # We didn't find anything, bail! if (len(candidates) < 1): print "Couldn't converge on resampler parameters" sys.exit(1) # # Now try to find candidate with the least sampling error # mindiff = 999.999 for i in candidates: diff = self.pulse_freq * i diff = diff - int(diff) if (diff < mindiff): mindiff = diff save_i = i # Recompute rates input_rate = self.folder_input_rate output_rate = int(self.pulse_freq * save_i) # Compute new interp and decim, based on best candidate interp = gru.lcm(input_rate, output_rate) / input_rate decim = gru.lcm(input_rate, output_rate) / output_rate # Save optimized folding parameters, used later self.folding = save_i self.interp = int(interp) self.decim = int(decim) # So that we can view N pulses in the pulse viewer window FOLD_MULT = self.mult # determine the daughterboard subdevice we're using self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) self.cardtype = self.u.daughterboard_id(0) # Compute raw input rate input_rate = self.u.adc_freq() / self.u.decim_rate() # BW==input_rate for complex data self.bw = input_rate # # Set baseband filter bandwidth if DBS_RX: # if self.cardtype == usrp_dbid.DBS_RX: lbw = input_rate / 2 if lbw < 1.0e6: lbw = 1.0e6 self.subdev.set_bw(lbw) # # We use this as a crude volume control for the audio output # #self.volume = gr.multiply_const_ff(10**(-1)) # # Create location data for ephem package # self.locality = ephem.Observer() self.locality.long = str(options.longitude) self.locality.lat = str(options.latitude) # # What is the post-detector LPF cutoff for the FFT? # PULSAR_MAX_FREQ = int(options.lowpass) # First low-pass filters down to input_rate/FIRST_FACTOR # and decimates appropriately FIRST_FACTOR = int(input_rate / (self.folder_input_rate / 2)) first_filter = gr.firdes.low_pass(1.0, input_rate, input_rate / FIRST_FACTOR, input_rate / (FIRST_FACTOR * 20), gr.firdes.WIN_HAMMING) # Second filter runs at the output rate of the first filter, # And low-pass filters down to PULSAR_MAX_FREQ*10 # second_input_rate = int(input_rate / (FIRST_FACTOR / 2)) second_filter = gr.firdes.band_pass(1.0, second_input_rate, 0.10, PULSAR_MAX_FREQ * 10, PULSAR_MAX_FREQ * 1.5, gr.firdes.WIN_HAMMING) # Third filter runs at PULSAR_MAX_FREQ*20 # and filters down to PULSAR_MAX_FREQ # third_input_rate = PULSAR_MAX_FREQ * 20 third_filter = gr.firdes_band_pass(1.0, third_input_rate, 0.10, PULSAR_MAX_FREQ, PULSAR_MAX_FREQ / 10.0, gr.firdes.WIN_HAMMING) # # Create the appropriate FFT scope # self.scope = ra_fftsink.ra_fft_sink_f(panel, fft_size=int(options.fft_size), sample_rate=PULSAR_MAX_FREQ * 2, title="Post-detector spectrum", ofunc=self.pulsarfunc, xydfunc=self.xydfunc, fft_rate=200) # # Tell scope we're looking from DC to PULSAR_MAX_FREQ # self.scope.set_baseband_freq(0.0) # # Setup stripchart for showing pulse profiles # hz = "%5.3fHz " % self.pulse_freq per = "(%5.3f sec)" % (1.0 / self.pulse_freq) sr = "%d sps" % (int(self.pulse_freq * self.folding)) times = " %d Pulse Intervals" % self.mult self.chart = ra_stripchartsink.stripchart_sink_f( panel, sample_rate=1, stripsize=self.folding * FOLD_MULT, parallel=True, title="Pulse Profiles: " + hz + per + times, xlabel="Seconds @ " + sr, ylabel="Level", autoscale=True, divbase=self.divbase, scaling=1.0 / (self.folding * self.pulse_freq)) self.chart.set_ref_level(self.reflevel) self.chart.set_y_per_div(self.division) # De-dispersion filter setup # # Do this here, just before creating the filter # that will use the taps. # ntaps = self.compute_disp_ntaps(self.dm, self.bw, self.observing_freq) # Taps for the de-dispersion filter self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64) # Compute the de-dispersion filter now self.compute_dispfilter(self.dm, self.doppler, self.bw, self.observing_freq) # # Call constructors for receive chains # # # Now create the FFT filter using the computed taps self.dispfilt = gr.fft_filter_ccc(1, self.disp_taps) # # Audio sink # #print "input_rate ", second_input_rate, "audiodev ", self.audiodev #self.audio = audio.sink(second_input_rate, self.audiodev) # # The three post-detector filters # Done this way to allow an audio path (up to 10Khz) # ...and also because going from xMhz down to ~100Hz # In a single filter doesn't seem to work. # self.first = gr.fir_filter_fff(FIRST_FACTOR / 2, first_filter) p = second_input_rate / (PULSAR_MAX_FREQ * 20) self.second = gr.fir_filter_fff(int(p), second_filter) self.third = gr.fir_filter_fff(10, third_filter) # Detector self.detector = gr.complex_to_mag_squared() self.enable_comb_filter = False # Epoch folder comb filter if self.enable_comb_filter == True: bogtaps = Numeric.zeros(512, Numeric.Float64) self.folder_comb = gr.fft_filter_ccc(1, bogtaps) # Rational resampler self.folder_rr = blks2.rational_resampler_fff(self.interp, self.decim) # Epoch folder bandpass bogtaps = Numeric.zeros(1, Numeric.Float64) self.folder_bandpass = gr.fir_filter_fff(1, bogtaps) # Epoch folder F2C/C2F self.folder_f2c = gr.float_to_complex() self.folder_c2f = gr.complex_to_float() # Epoch folder S2P self.folder_s2p = gr.serial_to_parallel(gr.sizeof_float, self.folding * FOLD_MULT) # Epoch folder IIR Filter (produces average pulse profiles) self.folder_iir = gr.single_pole_iir_filter_ff( 1.0 / options.favg, self.folding * FOLD_MULT) # # Set all the epoch-folder goop up # self.set_folding_params() # # Start connecting configured modules in the receive chain # # Connect raw USRP to de-dispersion filter, detector self.connect(self.u, self.dispfilt, self.detector) # Connect detector output to FIR LPF # in two stages, followed by the FFT scope self.connect(self.detector, self.first, self.second, self.third, self.scope) # Connect audio output #self.connect(self.first, self.volume) #self.connect(self.volume, (self.audio, 0)) #self.connect(self.volume, (self.audio, 1)) # Connect epoch folder if self.enable_comb_filter == True: self.connect(self.first, self.folder_bandpass, self.folder_rr, self.folder_f2c, self.folder_comb, self.folder_c2f, self.folder_s2p, self.folder_iir, self.chart) else: self.connect(self.first, self.folder_bandpass, self.folder_rr, self.folder_s2p, self.folder_iir, self.chart) # Connect baseband recording file (initially /dev/null) self.connect(self.u, self.tofloat, self.tochar, self.recording) # Connect pulse recording file (initially /dev/null) self.connect(self.first, self.toshort, self.pulse_recording) # # Build the GUI elements # self._build_gui(vbox) # Make GUI agree with command-line self.myform['average'].set_value(int(options.avg)) self.myform['foldavg'].set_value(int(options.favg)) # Make spectral averager agree with command line if options.avg != 1.0: self.scope.set_avg_alpha(float(1.0 / options.avg)) self.scope.set_average(True) # set initial values if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() options.gain = float(g[0] + g[1]) / 2 if options.freq is None: # if no freq was specified, use the mid-point r = self.subdev.freq_range() options.freq = float(r[0] + r[1]) / 2 self.set_gain(options.gain) #self.set_volume(-10.0) if not (self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) self.myform['dbname'].set_value(self.subdev.name()) self.myform['DM'].set_value(self.dm) self.myform['Doppler'].set_value(self.doppler) # # Start the timer that shows current LMST on the GUI # self.lmst_timer.Start(1000)
def __init__(self, frame, panel, vbox, argv): stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) self.frame = frame self.panel = panel parser = OptionParser(option_class=eng_option) parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0), help="select USRP Rx side A or B (default=A)") parser.add_option("-d", "--decim", type="int", default=16, help="set fgpa decimation rate to DECIM [default=%default]") parser.add_option("-f", "--freq", type="eng_float", default=None, help="set frequency to FREQ", metavar="FREQ") parser.add_option("-Q", "--observing", type="eng_float", default=0.0, help="set observing frequency to FREQ") parser.add_option("-a", "--avg", type="eng_float", default=1.0, help="set spectral averaging alpha") parser.add_option("-V", "--favg", type="eng_float", default=2.0, help="set folder averaging alpha") parser.add_option("-g", "--gain", type="eng_float", default=None, help="set gain in dB (default is midpoint)") parser.add_option("-l", "--reflevel", type="eng_float", default=30.0, help="Set pulse display reference level") parser.add_option("-L", "--lowest", type="eng_float", default=1.5, help="Lowest valid frequency bin") parser.add_option("-e", "--longitude", type="eng_float", default=-76.02, help="Set Observer Longitude") parser.add_option("-c", "--latitude", type="eng_float", default=44.85, help="Set Observer Latitude") parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT") parser.add_option ("-t", "--threshold", type="eng_float", default=2.5, help="pulsar threshold") parser.add_option("-p", "--lowpass", type="eng_float", default=100, help="Pulse spectra cutoff freq") parser.add_option("-P", "--prefix", default="./", help="File prefix") parser.add_option("-u", "--pulsefreq", type="eng_float", default=0.748, help="Observation pulse rate") parser.add_option("-D", "--dm", type="eng_float", default=1.0e-5, help="Dispersion Measure") parser.add_option("-O", "--doppler", type="eng_float", default=1.0, help="Doppler ratio") parser.add_option("-B", "--divbase", type="eng_float", default=20, help="Y/Div menu base") parser.add_option("-I", "--division", type="eng_float", default=100, help="Y/Div") parser.add_option("-A", "--audio_source", default="plughw:0,0", help="Audio input device spec") parser.add_option("-N", "--num_pulses", default=1, type="eng_float", help="Number of display pulses") (options, args) = parser.parse_args() if len(args) != 0: parser.print_help() sys.exit(1) self.show_debug_info = True self.reflevel = options.reflevel self.divbase = options.divbase self.division = options.division self.audiodev = options.audio_source self.mult = int(options.num_pulses) # Low-pass cutoff for post-detector filter # Set to 100Hz usually, since lots of pulsars fit in this # range self.lowpass = options.lowpass # What is lowest valid frequency bin in post-detector FFT? # There's some pollution very close to DC self.lowest_freq = options.lowest # What (dB) threshold to use in determining spectral candidates self.threshold = options.threshold # Filename prefix for recording file self.prefix = options.prefix # Dispersion Measure (DM) self.dm = options.dm # Doppler shift, as a ratio # 1.0 == no doppler shift # 1.005 == a little negative shift # 0.995 == a little positive shift self.doppler = options.doppler # # Input frequency and observing frequency--not necessarily the # same thing, if we're looking at the IF of some downconverter # that's ahead of the USRP and daughtercard. This distinction # is important in computing the correct de-dispersion filter. # self.frequency = options.freq if options.observing <= 0: self.observing_freq = options.freq else: self.observing_freq = options.observing # build the graph self.u = usrp.source_c(decim_rate=options.decim) self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) # # Recording file, in case we ever need to record baseband data # self.recording = gr.file_sink(gr.sizeof_char, "/dev/null") self.recording_state = False self.pulse_recording = gr.file_sink(gr.sizeof_short, "/dev/null") self.pulse_recording_state = False # # We come up with recording turned off, but the user may # request recording later on self.recording.close() self.pulse_recording.close() # # Need these two for converting 12-bit baseband signals to 8-bit # self.tofloat = gr.complex_to_float() self.tochar = gr.float_to_char() # Need this for recording pulses (post-detector) self.toshort = gr.float_to_short() # # The spectral measurer sets this when it has a valid # average spectral peak-to-peak distance # We can then use this to program the parameters for the epoch folder # # We set a sentimental value here self.pulse_freq = options.pulsefreq # Folder runs at this raw sample rate self.folder_input_rate = 20000 # Each pulse in the epoch folder is sampled at 128 times the nominal # pulse rate self.folding = 128 # # Try to find candidate parameters for rational resampler # save_i = 0 candidates = [] for i in range(20,300): input_rate = self.folder_input_rate output_rate = int(self.pulse_freq * i) interp = gru.lcm(input_rate, output_rate) / input_rate decim = gru.lcm(input_rate, output_rate) / output_rate if (interp < 500 and decim < 250000): candidates.append(i) # We didn't find anything, bail! if (len(candidates) < 1): print "Couldn't converge on resampler parameters" sys.exit(1) # # Now try to find candidate with the least sampling error # mindiff = 999.999 for i in candidates: diff = self.pulse_freq * i diff = diff - int(diff) if (diff < mindiff): mindiff = diff save_i = i # Recompute rates input_rate = self.folder_input_rate output_rate = int(self.pulse_freq * save_i) # Compute new interp and decim, based on best candidate interp = gru.lcm(input_rate, output_rate) / input_rate decim = gru.lcm(input_rate, output_rate) / output_rate # Save optimized folding parameters, used later self.folding = save_i self.interp = int(interp) self.decim = int(decim) # So that we can view N pulses in the pulse viewer window FOLD_MULT=self.mult # determine the daughterboard subdevice we're using self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) self.cardtype = self.u.daughterboard_id(0) # Compute raw input rate input_rate = self.u.adc_freq() / self.u.decim_rate() # BW==input_rate for complex data self.bw = input_rate # # Set baseband filter bandwidth if DBS_RX: # if self.cardtype == usrp_dbid.DBS_RX: lbw = input_rate / 2 if lbw < 1.0e6: lbw = 1.0e6 self.subdev.set_bw(lbw) # # We use this as a crude volume control for the audio output # #self.volume = gr.multiply_const_ff(10**(-1)) # # Create location data for ephem package # self.locality = ephem.Observer() self.locality.long = str(options.longitude) self.locality.lat = str(options.latitude) # # What is the post-detector LPF cutoff for the FFT? # PULSAR_MAX_FREQ=int(options.lowpass) # First low-pass filters down to input_rate/FIRST_FACTOR # and decimates appropriately FIRST_FACTOR=int(input_rate/(self.folder_input_rate/2)) first_filter = gr.firdes.low_pass (1.0, input_rate, input_rate/FIRST_FACTOR, input_rate/(FIRST_FACTOR*20), gr.firdes.WIN_HAMMING) # Second filter runs at the output rate of the first filter, # And low-pass filters down to PULSAR_MAX_FREQ*10 # second_input_rate = int(input_rate/(FIRST_FACTOR/2)) second_filter = gr.firdes.band_pass(1.0, second_input_rate, 0.10, PULSAR_MAX_FREQ*10, PULSAR_MAX_FREQ*1.5, gr.firdes.WIN_HAMMING) # Third filter runs at PULSAR_MAX_FREQ*20 # and filters down to PULSAR_MAX_FREQ # third_input_rate = PULSAR_MAX_FREQ*20 third_filter = gr.firdes_band_pass(1.0, third_input_rate, 0.10, PULSAR_MAX_FREQ, PULSAR_MAX_FREQ/10.0, gr.firdes.WIN_HAMMING) # # Create the appropriate FFT scope # self.scope = ra_fftsink.ra_fft_sink_f (panel, fft_size=int(options.fft_size), sample_rate=PULSAR_MAX_FREQ*2, title="Post-detector spectrum", ofunc=self.pulsarfunc, xydfunc=self.xydfunc, fft_rate=200) # # Tell scope we're looking from DC to PULSAR_MAX_FREQ # self.scope.set_baseband_freq (0.0) # # Setup stripchart for showing pulse profiles # hz = "%5.3fHz " % self.pulse_freq per = "(%5.3f sec)" % (1.0/self.pulse_freq) sr = "%d sps" % (int(self.pulse_freq*self.folding)) times = " %d Pulse Intervals" % self.mult self.chart = ra_stripchartsink.stripchart_sink_f (panel, sample_rate=1, stripsize=self.folding*FOLD_MULT, parallel=True, title="Pulse Profiles: "+hz+per+times, xlabel="Seconds @ "+sr, ylabel="Level", autoscale=True, divbase=self.divbase, scaling=1.0/(self.folding*self.pulse_freq)) self.chart.set_ref_level(self.reflevel) self.chart.set_y_per_div(self.division) # De-dispersion filter setup # # Do this here, just before creating the filter # that will use the taps. # ntaps = self.compute_disp_ntaps(self.dm,self.bw,self.observing_freq) # Taps for the de-dispersion filter self.disp_taps = Numeric.zeros(ntaps,Numeric.Complex64) # Compute the de-dispersion filter now self.compute_dispfilter(self.dm,self.doppler, self.bw,self.observing_freq) # # Call constructors for receive chains # # # Now create the FFT filter using the computed taps self.dispfilt = gr.fft_filter_ccc(1, self.disp_taps) # # Audio sink # #print "input_rate ", second_input_rate, "audiodev ", self.audiodev #self.audio = audio.sink(second_input_rate, self.audiodev) # # The three post-detector filters # Done this way to allow an audio path (up to 10Khz) # ...and also because going from xMhz down to ~100Hz # In a single filter doesn't seem to work. # self.first = gr.fir_filter_fff (FIRST_FACTOR/2, first_filter) p = second_input_rate / (PULSAR_MAX_FREQ*20) self.second = gr.fir_filter_fff (int(p), second_filter) self.third = gr.fir_filter_fff (10, third_filter) # Detector self.detector = gr.complex_to_mag_squared() self.enable_comb_filter = False # Epoch folder comb filter if self.enable_comb_filter == True: bogtaps = Numeric.zeros(512, Numeric.Float64) self.folder_comb = gr.fft_filter_ccc(1,bogtaps) # Rational resampler self.folder_rr = blks2.rational_resampler_fff(self.interp, self.decim) # Epoch folder bandpass bogtaps = Numeric.zeros(1, Numeric.Float64) self.folder_bandpass = gr.fir_filter_fff (1, bogtaps) # Epoch folder F2C/C2F self.folder_f2c = gr.float_to_complex() self.folder_c2f = gr.complex_to_float() # Epoch folder S2P self.folder_s2p = gr.serial_to_parallel (gr.sizeof_float, self.folding*FOLD_MULT) # Epoch folder IIR Filter (produces average pulse profiles) self.folder_iir = gr.single_pole_iir_filter_ff(1.0/options.favg, self.folding*FOLD_MULT) # # Set all the epoch-folder goop up # self.set_folding_params() # # Start connecting configured modules in the receive chain # # Connect raw USRP to de-dispersion filter, detector self.connect(self.u, self.dispfilt, self.detector) # Connect detector output to FIR LPF # in two stages, followed by the FFT scope self.connect(self.detector, self.first, self.second, self.third, self.scope) # Connect audio output #self.connect(self.first, self.volume) #self.connect(self.volume, (self.audio, 0)) #self.connect(self.volume, (self.audio, 1)) # Connect epoch folder if self.enable_comb_filter == True: self.connect (self.first, self.folder_bandpass, self.folder_rr, self.folder_f2c, self.folder_comb, self.folder_c2f, self.folder_s2p, self.folder_iir, self.chart) else: self.connect (self.first, self.folder_bandpass, self.folder_rr, self.folder_s2p, self.folder_iir, self.chart) # Connect baseband recording file (initially /dev/null) self.connect(self.u, self.tofloat, self.tochar, self.recording) # Connect pulse recording file (initially /dev/null) self.connect(self.first, self.toshort, self.pulse_recording) # # Build the GUI elements # self._build_gui(vbox) # Make GUI agree with command-line self.myform['average'].set_value(int(options.avg)) self.myform['foldavg'].set_value(int(options.favg)) # Make spectral averager agree with command line if options.avg != 1.0: self.scope.set_avg_alpha(float(1.0/options.avg)) self.scope.set_average(True) # set initial values if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.subdev.gain_range() options.gain = float(g[0]+g[1])/2 if options.freq is None: # if no freq was specified, use the mid-point r = self.subdev.freq_range() options.freq = float(r[0]+r[1])/2 self.set_gain(options.gain) #self.set_volume(-10.0) if not(self.set_freq(options.freq)): self._set_status_msg("Failed to set initial frequency") self.myform['decim'].set_value(self.u.decim_rate()) self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) self.myform['dbname'].set_value(self.subdev.name()) self.myform['DM'].set_value(self.dm) self.myform['Doppler'].set_value(self.doppler) # # Start the timer that shows current LMST on the GUI # self.lmst_timer.Start(1000)