Exemple #1
0
def goto(newgen):
    currgen = int(g.getgen())
    
    if newgen < currgen:
        # try to go back to starting gen (not necessarily 0) and
        # then forwards to newgen; note that reset() also restores
        # algorithm and/or rule, so too bad if user changed those
        # after the starting info was saved;
        # first save current location and scale
        midx, midy = g.getpos()
        mag = g.getmag()
        g.reset()
        # restore location and scale
        g.setpos(midx, midy)
        g.setmag(mag)
        # current gen might be > 0 if user loaded a pattern file
        # that set the gen count
        currgen = int(g.getgen())
        if newgen < currgen:
            g.error("Can't go back any further; pattern was saved " +
                    "at generation " + str(currgen) + ".")
            return
    if newgen == currgen: return

    oldsecs = time()

    # before stepping we advance by 1 generation, for two reasons:
    # 1. if we're at the starting gen then the *current* step size
    #    will be saved (and restored upon Reset/Undo) rather than a
    #    possibly very large step size
    # 2. it increases the chances the user will see updates and so
    #    get some idea of how long the script will take to finish
    #    (otherwise if the base is 10 and a gen like 1,000,000,000
    #    is given then only a single step() of 10^9 would be done)
    g.run(1)
    currgen += 1

    # use fast stepping (thanks to PM 2Ring)
    oldstep = g.getstep()
    for i, d in enumerate(intbase(newgen - currgen, g.getbase())):
        if d > 0:
            g.setstep(i)
            for j in xrange(d):
                if g.empty():
                    g.show("Pattern is empty.")
                    return
                g.step()
                newsecs = time()
                if newsecs - oldsecs >= 1.0:  # do an update every sec
                    oldsecs = newsecs
                    g.update()
    g.setstep(oldstep)
Exemple #2
0
def goto(newgen):
    currgen = int(g.getgen())

    if newgen < currgen:
        # try to go back to starting gen (not necessarily 0) and
        # then forwards to newgen; note that reset() also restores
        # algorithm and/or rule, so too bad if user changed those
        # after the starting info was saved;
        # first save current location and scale
        midx, midy = g.getpos()
        mag = g.getmag()
        g.reset()
        # restore location and scale
        g.setpos(midx, midy)
        g.setmag(mag)
        # current gen might be > 0 if user loaded a pattern file
        # that set the gen count
        currgen = int(g.getgen())
        if newgen < currgen:
            g.error("Can't go back any further; pattern was saved " +
                    "at generation " + str(currgen) + ".")
            return
    if newgen == currgen: return

    oldsecs = time()

    # before stepping we advance by 1 generation, for two reasons:
    # 1. if we're at the starting gen then the *current* step size
    #    will be saved (and restored upon Reset/Undo) rather than a
    #    possibly very large step size
    # 2. it increases the chances the user will see updates and so
    #    get some idea of how long the script will take to finish
    #    (otherwise if the base is 10 and a gen like 1,000,000,000
    #    is given then only a single step() of 10^9 would be done)
    g.run(1)
    currgen += 1

    # use fast stepping (thanks to PM 2Ring)
    oldstep = g.getstep()
    for i, d in enumerate(intbase(newgen - currgen, g.getbase())):
        if d > 0:
            g.setstep(i)
            for j in xrange(d):
                if g.empty():
                    g.show("Pattern is empty.")
                    return
                g.step()
                newsecs = time()
                if newsecs - oldsecs >= 1.0:  # do an update every sec
                    oldsecs = newsecs
                    g.update()
    g.setstep(oldstep)
Exemple #3
0
def gt_setup(gen):
   currgen = int(g.getgen())
   # Remove leading '+' or '-' if any, and convert rest to int or long
   if gen[0] == '+':
      n = int(gen[1:])
      newgen = currgen + n
   elif gen[0] == '-':
      n = int(gen[1:])
      if currgen > n:
         newgen = currgen - n
      else:
         newgen = 0
   else:
      newgen = int(gen)
   
   if newgen < currgen:
      # try to go back to starting gen (not necessarily 0) and
      # then forwards to newgen; note that reset() also restores
      # algorithm and/or rule, so too bad if user changed those
      # after the starting info was saved;
      # first save current location and scale
      midx, midy = g.getpos()
      mag = g.getmag()
      g.reset()
      # restore location and scale
      g.setpos(midx, midy)
      g.setmag(mag)
      # current gen might be > 0 if user loaded a pattern file
      # that set the gen count
      currgen = int(g.getgen())
      if newgen < currgen:
         g.error("Can't go back any further; pattern was saved " +
                 "at generation " + str(currgen) + ".")
         return 0
      return newgen - currgen
   elif newgen > currgen:
      return newgen - currgen
   else:
     return 0
Exemple #4
0
def gt_setup(gen):
    currgen = int(g.getgen())
    # Remove leading '+' or '-' if any, and convert rest to int or long
    if gen[0] == '+':
        n = int(gen[1:])
        newgen = currgen + n
    elif gen[0] == '-':
        n = int(gen[1:])
        if currgen > n:
            newgen = currgen - n
        else:
            newgen = 0
    else:
        newgen = int(gen)

    if newgen < currgen:
        # try to go back to starting gen (not necessarily 0) and
        # then forwards to newgen; note that reset() also restores
        # algorithm and/or rule, so too bad if user changed those
        # after the starting info was saved;
        # first save current location and scale
        midx, midy = g.getpos()
        mag = g.getmag()
        g.reset()
        # restore location and scale
        g.setpos(midx, midy)
        g.setmag(mag)
        # current gen might be > 0 if user loaded a pattern file
        # that set the gen count
        currgen = int(g.getgen())
        if newgen < currgen:
            g.error("Can't go back any further; pattern was saved " +
                    "at generation " + str(currgen) + ".")
            return 0
        return newgen - currgen
    elif newgen > currgen:
        return newgen - currgen
    else:
        return 0
def getposint():
   # return current viewport position as integer coords
   x, y = golly.getpos()
   return int(x), int(y)
Exemple #6
0
def getposint():
    # return current viewport position as integer coords
    x, y = golly.getpos()
    return int(x), int(y)