def train(pipeline, output_dir, train_args_dict, train_features=None, eval_features=None, metadata=None): if not train_features: train_features = (pipeline | 'ReadTrain' >> io.LoadFeatures( os.path.join(output_dir, 'features_train*'))) if not eval_features: eval_features = (pipeline | 'ReadEval' >> io.LoadFeatures( os.path.join(output_dir, 'features_eval*'))) if not metadata: metadata = (pipeline | 'ReadMetadata' >> io.LoadMetadata( os.path.join(output_dir, METADATA_FILE_NAME))) trained_model, results = ((train_features, eval_features) | 'Train' >> ml.Train(**train_args_dict)) trained_model | 'SaveModel' >> io.SaveModel( os.path.join(output_dir, 'saved_model')) results | io.SaveTrainingJobResult( os.path.join(output_dir, 'train_results')) return trained_model, results
def train(pipeline, train_features=None, eval_features=None, metadata=None): if not train_features: train_features = ( pipeline | 'ReadTrain' >> io.LoadFeatures(os.path.join(args.output_dir, 'features_train*'))) if not eval_features: eval_features = ( pipeline | 'ReadEval' >> io.LoadFeatures(os.path.join(args.output_dir, 'features_eval*'))) trained_model, results = ((train_features, eval_features) | ml.Train(**get_train_parameters(metadata))) trained_model | 'SaveModel' >> io.SaveModel(os.path.join(args.output_dir, 'saved_model')) results | io.SaveTrainingJobResult(os.path.join(args.output_dir, 'train_results')) return trained_model, results