Exemple #1
0
def streaming_annotate(stream_file):
  """Annotate a local video file through streaming API."""

  client = videointelligence.StreamingVideoIntelligenceServiceClient()

  # Set the chunk size to 5MB (recommended less than 10MB).
  chunk_size = 5 * 1024 * 1024

  # Open file.
  with open(stream_file) as video_file:
    requests = (
        types.StreamingAnnotateVideoRequest(input_content=chunk)
        for chunk in stream(video_file, chunk_size))

    # Set streaming config.
    config = types.StreamingVideoConfig(
        feature=enums.StreamingFeature.STREAMING_EXPLICIT_CONTENT_DETECTION)
    config_request = types.StreamingAnnotateVideoRequest(video_config=config)
    # streaming_annotate_video returns a generator.
    # timeout argument specifies the maximum allowable time duration between
    # the time that the last packet is sent to Google video intelligence API
    # and the time that an annotation result is returned from the API.
    # timeout argument is represented in number of seconds.
    responses = client.streaming_annotate_video(
        config_request, requests, timeout=10800)

    print('\nReading response.')
    # Retrieve results from the response generator.
    for response in responses:
      for frame in response.annotation_results.explicit_annotation.frames:
        likelihood = enums.Likelihood(frame.pornography_likelihood)
        frame_time = frame.time_offset.seconds + frame.time_offset.nanos / 1e9
        print('Time: {}s'.format(frame_time))
        print('\tpornography: {}'.format(likelihood.name))
Exemple #2
0
def streaming_annotate(stream_file):
    """Annotate a local video file through streaming API."""

    client = videointelligence.StreamingVideoIntelligenceServiceClient()

    # Set the chunk size to 5MB (recommended less than 10MB).
    chunk_size = 5 * 1024 * 1024

    # Open file.
    with open(stream_file) as video_file:
        requests = (types.StreamingAnnotateVideoRequest(input_content=chunk)
                    for chunk in stream(video_file, chunk_size))

    # Set streaming config.
    config = types.StreamingVideoConfig(
        feature=enums.StreamingFeature.STREAMING_OBJECT_TRACKING)
    config_request = types.StreamingAnnotateVideoRequest(video_config=config)
    # streaming_annotate_video returns a generator.
    # timeout argument specifies the maximum allowable time duration between
    # the time that the last packet is sent to Google video intelligence API
    # and the time that an annotation result is returned from the API.
    # timeout argument is represented in number of seconds.
    responses = client.streaming_annotate_video(config_request,
                                                requests,
                                                timeout=10800)

    print '\nReading response.'
    # Retrieve results from the response generator.
    for response in responses:
        object_annotations = response.annotation_results.object_annotations

        # When object_annotations is empty, no object is found.
        if object_annotations:
            for annotation in object_annotations:
                description = annotation.entity.description
                confidence = annotation.confidence
                track_id = annotation.track_id

                print 'Entity description: {}'.format(description)
                print 'Track Id: {}'.format(track_id)
                if annotation.entity.entity_id:
                    print 'Entity id: {}'.format(annotation.entity.entity_id)

                print 'Confidence: {}'.format(confidence)

                # In streaming mode, len(annotation.frames) is always 1, and the frames
                # in the same response share the same time_offset.
                frame = annotation.frames[0]
                box = frame.normalized_bounding_box
                print('Time: {}s'.format(frame.time_offset.seconds +
                                         frame.time_offset.nanos / 1e9))
                print 'Bounding box position:'
                print '\tleft  : {}'.format(box.left)
                print '\ttop   : {}'.format(box.top)
                print '\tright : {}'.format(box.right)
                print '\tbottom: {}'.format(box.bottom)
                print '\n'
def streaming_annotate(stream_file):
    """Annotate a local video file through streaming API."""

    client = videointelligence.StreamingVideoIntelligenceServiceClient()
    # Set the chunk size to 5MB (recommended less than 10MB).
    chunk_size = 5 * 1024 * 1024

    # Open file.
    with open(stream_file) as video_file:
        requests = (types.StreamingAnnotateVideoRequest(input_content=chunk)
                    for chunk in stream(video_file, chunk_size))

        # Set streaming config with stationary_camera option.
        # stationary_camera flag can be set to False (default option) or True.
        label_config = types.StreamingLabelDetectionConfig(
            stationary_camera=False)
        config = types.StreamingVideoConfig(
            feature=enums.StreamingFeature.STREAMING_LABEL_DETECTION,
            label_detection_config=label_config)
        config_request = types.StreamingAnnotateVideoRequest(
            video_config=config)

        # streaming_annotate_video returns a generator.
        # timeout argument specifies the maximum allowable time duration between
        # the time that the last packet is sent to Google video intelligence API
        # and the time that an annotation result is returned from the API.
        # timeout argument is represented in number of seconds.
        responses = client.streaming_annotate_video(config_request,
                                                    requests,
                                                    timeout=10800)

        print '\nReading response.'
        # Retrieve results from the response generator.
        for response in responses:
            for annotation in response.annotation_results.label_annotations:
                description = annotation.entity.description
                # The response of steaming_annotate_video has only one frame for each
                # annotation.
                time_offset = annotation.frames[0].time_offset.seconds + \
                              annotation.frames[0].time_offset.nanos / 1e9
                confidence = annotation.frames[0].confidence
                print '{}s: {}\t ({})'.format(
                    time_offset,
                    description.encode('utf-8').strip(), confidence)
def streaming_annotate(stream_file, output_uri):
    """Annotate a local video file through streaming API."""

    client = videointelligence.StreamingVideoIntelligenceServiceClient()
    # Set the chunk size to 5MB (recommended less than 10MB).
    chunk_size = 5 * 1024 * 1024

    # Open file.
    with open(stream_file) as video_file:
        requests = (types.StreamingAnnotateVideoRequest(input_content=chunk)
                    for chunk in stream(video_file, chunk_size))

        # Use storage config option in the config request to enable storage.
        storage_config = types.StreamingStorageConfig(
            enable_storage_annotation_result=True,
            annotation_result_storage_directory=output_uri)
        # LABEL_DETECTION feature is used as an example. Storage works for all
        # supported features.
        label_config = types.StreamingLabelDetectionConfig()
        config = types.StreamingVideoConfig(
            feature=enums.StreamingFeature.STREAMING_LABEL_DETECTION,
            label_detection_config=label_config,
            storage_config=storage_config)
        config_request = types.StreamingAnnotateVideoRequest(
            video_config=config)

        # streaming_annotate_video returns a generator.
        # timeout argument specifies the maximum allowable time duration between
        # the time that the last packet is sent to Google video intelligence API
        # and the time that an annotation result is returned from the API.
        # timeout argument is represented in number of seconds.
        responses = client.streaming_annotate_video(config_request,
                                                    requests,
                                                    timeout=10800)

        print('\nReading response.')
        # Retrieve results from the response generator.
        for response in responses:
            print('Storage uri: {}'.format(response.annotation_results_uri))
def streaming_annotate(stream_file):
    """Annotate a local video file through streaming API."""

    client = videointelligence.StreamingVideoIntelligenceServiceClient()
    # Set the chunk size to 5MB (recommended less than 10MB).
    chunk_size = 5 * 1024 * 1024

    # Open file.
    with open(stream_file) as video_file:
        requests = (types.StreamingAnnotateVideoRequest(input_content=chunk)
                    for chunk in stream(video_file, chunk_size))

        # Set streaming config.
        config = types.StreamingVideoConfig(
            feature=enums.StreamingFeature.STREAMING_SHOT_CHANGE_DETECTION)
        config_request = types.StreamingAnnotateVideoRequest(
            video_config=config)

        # streaming_annotate_video returns a generator.
        # timeout argument specifies the maximum allowable time duration between
        # the time that the last packet is sent to Google video intelligence API
        # and the time that an annotation result is returned from the API.
        # timeout argument is represented in number of seconds.
        responses = client.streaming_annotate_video(config_request,
                                                    requests,
                                                    timeout=10800)

        print('\nReading response.')
        # Retrieve results from the response generator.
        for response in responses:
            for annotation in response.annotation_results.shot_annotations:
                print('Shot: {}s to {}s'.format(
                    annotation.start_time_offset.seconds +
                    annotation.start_time_offset.nanos / 1e9,
                    annotation.end_time_offset.seconds +
                    annotation.end_time_offset.nanos / 1e9))
def streaming_annotate(stream_file, out_file):
    """Annotate a local video file through streaming API."""

    client = videointelligence.StreamingVideoIntelligenceServiceClient()

    # Set the chunk size to 5MB (recommended less than 10MB).
    chunk_size = 5 * 1024 * 1024

    # Open file.
    with open(stream_file) as video_file:
        requests = (types.StreamingAnnotateVideoRequest(input_content=chunk)
                    for chunk in stream(video_file, chunk_size))

        # Set streaming config.
        config = types.StreamingVideoConfig(
            feature=enums.StreamingFeature.STREAMING_OBJECT_TRACKING)
        config_request = types.StreamingAnnotateVideoRequest(
            video_config=config)
        # streaming_annotate_video returns a generator.
        # timeout argument specifies the maximum allowable time duration between
        # the time that the last packet is sent to Google video intelligence API
        # and the time that an annotation result is returned from the API.
        # timeout argument is represented in number of seconds.
        responses = client.streaming_annotate_video(config_request,
                                                    requests,
                                                    timeout=10800)

        print('[ANALYSIS] Reading response.')
        with open(out_file, "w", 0) as out_handle:
            print("[ANALYSIS] Opened output analysis file at {}".format(
                out_file))
            # Retrieve results from the response generator.
            for response in responses:
                object_annotations = response.annotation_results.object_annotations

                # When object_annotations is empty, no object is found.
                if object_annotations:
                    to_write = []
                    for annotation in object_annotations:
                        description = annotation.entity.description
                        confidence = annotation.confidence
                        track_id = annotation.track_id

                        # print('[ANALYSIS] Entity description: {}'.format(description))
                        # print('[ANALYSIS] Track Id: {}'.format(track_id))
                        # if annotation.entity.entity_id:
                        #     print('[ANALYSIS] Entity id: {}'.format(annotation.entity.entity_id))

                        # print('[ANALYSIS] Confidence: {}'.format(confidence))

                        # In streaming mode, len(annotation.frames) is always 1, and the frames
                        # in the same response share the same time_offset.
                        frame = annotation.frames[0]
                        box = frame.normalized_bounding_box
                        time = frame.time_offset.seconds + frame.time_offset.nanos / 1e9
                        # print('[ANALYSIS] Time: {}s'.format(time))
                        # print('[ANALYSIS] Bounding box position:')
                        # print('[ANALYSIS] \tleft  : {}'.format(box.left))
                        # print('[ANALYSIS] \ttop   : {}'.format(box.top))
                        # print('[ANALYSIS] \tright : {}'.format(box.right))
                        # print('[ANALYSIS] \tbottom: {}'.format(box.bottom))
                        # print('\n')
                        cols = [
                            description,
                            track_id,
                            confidence,
                            time,
                            box.left,
                            box.top,
                            box.right,
                            box.bottom,
                        ]
                        line_to_write = ",".join(str(col)
                                                 for col in cols) + "\n"
                        # print("[ANALYSIS] line: ", line_to_write)
                        to_write.append(line_to_write)
                    # print("[ANALYSIS] Writing labels!")
                    out_handle.writelines(to_write)
                    out_handle.flush()