def __init__(self, Y=None, Cg=None, Cn=None, R=None, S_R=None, U_R=None, G=None, rank=None): """ Args: Y: [N, P] phenotype matrix Cg: Limix covariance matrix for Cg (dimension P) Cn: Limix covariance matrix for Cn (dimension P) G: [N, rank_r] numpy covariance matrix for G R: [N, N] numpy semidemidefinite covariance matrix for R. In alternative to R, S_R and U_R can be specified. S_R: N vector of eigenvalues of R U_R: [N, N] eigenvector matrix of R rank: rank of column low-rank covariance (default = 1) """ covar = Cov3KronSumLR(Cg=Cg, Cn=Cn, R=R, G=G, rank=rank, S_R=S_R, U_R=U_R) mean = MeanKronSum(Y=Y) GP.__init__(self, covar=covar, mean=mean)
def __init__(self, Y, Cg, Cn, F=None, A=None, R=None, S_R=None, U_R=None): """ Args: Y: [N, P] phenotype matrix F: list of sample fixed effect designs. Each term must have first dimension N A: list of trait fixed effect design. Each term must have second dimension P Cg: Limix covariance matrix for Cg (dimension P) Cn: Limix covariance matrix for Cn (dimension P) R: [N, N] numpy semidemidefinite covariance matrix for R. In alternative to R, S_R and U_R can be specified. S_R: N vector of eigenvalues of R U_R: [N, N] eigenvector matrix of R """ assert_type(Y, NP.ndarray, 'Y') assert_subtype(Cg, Covariance, 'Cg') assert_subtype(Cn, Covariance, 'Cn') covar = Cov2KronSum(Cg=Cg, Cn=Cn, R=R, S_R=S_R, U_R=U_R) mean = MeanKronSum(Y=Y, F=F, A=A) GP.__init__(self, covar=covar, mean=mean)