Exemple #1
0
def test_sample_and_predict(x, w):
    # Use output transform to ensure that is handled correctly.
    reg = GPARRegressor(
        replace=False,
        impute=False,
        linear=True,
        linear_scale=1.0,
        nonlinear=False,
        noise=1e-8,
        normalise_y=False,
        transform_y=squishing_transform,
    )

    # Test checks.
    with pytest.raises(ValueError):
        reg.sample(x, w)
    with pytest.raises(RuntimeError):
        reg.sample(x, w, posterior=True)

    # Test that output is simplified correctly.
    assert isinstance(reg.sample(x, w, p=2), np.ndarray)
    assert isinstance(reg.sample(x, w, p=2, num_samples=2), list)

    # Test that it produces random samples. Not sure how to test correctness.
    all_different(reg.sample(x, w, p=2), reg.sample(x, w, p=2))
    all_different(reg.sample(x, w, p=2, latent=True),
                  reg.sample(x, w, p=2, latent=True))

    # Test that mean of posterior samples are around the data.
    y = reg.sample(x, w, p=2)
    reg.condition(x, y, w)
    approx(y,
           np.mean(reg.sample(x, w, posterior=True, num_samples=100), axis=0),
           atol=5e-2)
    approx(
        y,
        np.mean(reg.sample(x, w, latent=True, posterior=True, num_samples=100),
                axis=0),
        atol=5e-2,
    )

    # Test that prediction is around the data.
    approx(y, reg.predict(x, w, num_samples=100), atol=5e-2)
    approx(y, reg.predict(x, w, latent=True, num_samples=100), atol=5e-2)

    # Test that prediction is confident.
    _, lowers, uppers = reg.predict(x,
                                    w,
                                    num_samples=100,
                                    credible_bounds=True)
    approx(uppers, lowers, atol=5e-2)
Exemple #2
0
def test_sample_and_predict():
    reg = GPARRegressor(replace=False,
                        impute=False,
                        linear=True,
                        linear_scale=1.,
                        nonlinear=False,
                        noise=1e-8,
                        normalise_y=False)
    x = np.linspace(0, 5, 10)

    # Test checks.
    yield raises, ValueError, lambda: reg.sample(x)
    yield raises, RuntimeError, lambda: reg.sample(x, posterior=True)

    # Test that output is simplified correctly.
    yield isinstance, reg.sample(x, p=2), np.ndarray
    yield isinstance, reg.sample(x, p=2, num_samples=2), list

    # Test that it produces random samples. Not sure how to test correctness.
    yield ge, np.sum(np.abs(reg.sample(x, p=2) - reg.sample(x, p=2))), 1e-2
    yield ge, np.sum(
        np.abs(
            reg.sample(x, p=2, latent=True) -
            reg.sample(x, p=2, latent=True))), 1e-3

    # Test that mean of posterior samples are around the data.
    y = reg.sample(x, p=2)
    reg.fit(x, y, iters=0)
    yield approx, y, np.mean(reg.sample(x, posterior=True, num_samples=20),
                             axis=0), 4
    yield approx, y, np.mean(reg.sample(x,
                                        latent=True,
                                        posterior=True,
                                        num_samples=20),
                             axis=0), 4

    # Test that prediction is around the data.
    yield approx, y, reg.predict(x, num_samples=20), 4
    yield approx, y, reg.predict(x, latent=True, num_samples=20), 4

    # Test that prediction is confident.
    _, lowers, uppers = reg.predict(x, num_samples=10, credible_bounds=True)
    yield ok, np.less_equal(uppers - lowers, 1e-3).all()
Exemple #3
0
def test_sample_and_predict():
    # Use output transform to ensure that is handled correctly.
    reg = GPARRegressor(replace=False, impute=False,
                        linear=True, linear_scale=1., nonlinear=False,
                        noise=1e-8, normalise_y=False,
                        transform_y=squishing_transform)
    x = np.linspace(0, 5, 5)

    # Test checks.
    with pytest.raises(ValueError):
        reg.sample(x)
    with pytest.raises(RuntimeError):
        reg.sample(x, posterior=True)

    # Test that output is simplified correctly.
    assert isinstance(reg.sample(x, p=2), np.ndarray)
    assert isinstance(reg.sample(x, p=2, num_samples=2), list)

    # Test that it produces random samples. Not sure how to test correctness.
    assert np.sum(np.abs(reg.sample(x, p=2) - reg.sample(x, p=2))) >= 1e-2
    assert np.sum(np.abs(reg.sample(x, p=2, latent=True) -
                         reg.sample(x, p=2, latent=True))) >= 1e-3

    # Test that mean of posterior samples are around the data.
    y = reg.sample(x, p=2)
    reg.condition(x, y)
    approx(y, np.mean(reg.sample(x,
                                 posterior=True,
                                 num_samples=100), axis=0), digits=3)
    approx(y, np.mean(reg.sample(x,
                                 latent=True,
                                 posterior=True,
                                 num_samples=100), axis=0), digits=3)

    # Test that prediction is around the data.
    approx(y, reg.predict(x, num_samples=100), digits=3)
    approx(y, reg.predict(x, latent=True, num_samples=100), digits=3)

    # Test that prediction is confident.
    _, lowers, uppers = reg.predict(x, num_samples=100, credible_bounds=True)
    assert np.less_equal(uppers - lowers, 1e-2).all()
Exemple #4
0
    y = f + noise * np.random.randn(n, 3)
    x_obs, y_obs = x[::8], y[::8]

    # Fit and predict GPAR.
    model = GPARRegressor(scale=0.1,
                          linear=True,
                          linear_scale=10.,
                          nonlinear=True,
                          nonlinear_scale=0.1,
                          noise=0.1,
                          impute=True,
                          replace=False,
                          normalise_y=False)
    model.fit(x_obs, y_obs)
    means, lowers, uppers = \
        model.predict(x, num_samples=100, credible_bounds=True, latent=True)

    # Fit and predict independent GPs: set markov=0.
    igp = GPARRegressor(scale=0.1,
                        linear=True,
                        linear_scale=10.,
                        nonlinear=True,
                        nonlinear_scale=0.1,
                        noise=0.1,
                        markov=0,
                        normalise_y=False)
    igp.fit(x_obs, y_obs)
    igp_means, igp_lowers, igp_uppers = \
        igp.predict(x, num_samples=100, credible_bounds=True, latent=True)

    # Plot the result.
Exemple #5
0
model = GPARRegressor(scale=0.1,
                      linear=False, nonlinear=True, nonlinear_scale=0.5,
                      impute=True, replace=True,
                      noise=0.1, normalise_y=True)

# Sample observations and discard some.
y = model.sample(x, p=3)
y_obs = y.copy()
y_obs[np.random.permutation(100)[:25], 0] = np.nan
y_obs[np.random.permutation(100)[:50], 1] = np.nan
y_obs[np.random.permutation(100)[:75], 2] = np.nan

# Fit model and predict.
model.fit(x, y)
means, lowers, uppers = \
    model.predict(x, num_samples=200, latent=False, credible_bounds=True)

# Plot the result.
plt.figure(figsize=(8, 6))

for i in range(3):
    plt.subplot(3, 1, i + 1)
    plt.plot(x, means[:, i], label='Prediction', style='pred')
    plt.fill_between(x, lowers[:, i], uppers[:, i], style='pred')
    plt.scatter(x, y[:, i], label='Truth', style='test')
    plt.scatter(x, y_obs[:, i], label='Observations', style='train')
    plt.ylabel(f'Output {i + 1}')
    wbml.plot.tweak(legend=i == 0)

plt.tight_layout()
plt.show()
Exemple #6
0
    replace=True,
    noise=0.1,
    normalise_y=True,
)

# Sample observations and discard some.
y = model.sample(x, p=3)
y_obs = y.copy()
y_obs[np.random.permutation(100)[:25], 0] = np.nan
y_obs[np.random.permutation(100)[:50], 1] = np.nan
y_obs[np.random.permutation(100)[:75], 2] = np.nan

# Fit model and predict.
model.fit(x, y)
means, lowers, uppers = model.predict(x,
                                      num_samples=200,
                                      latent=False,
                                      credible_bounds=True)

# Plot the result.
plt.figure(figsize=(8, 6))

for i in range(3):
    plt.subplot(3, 1, i + 1)
    plt.plot(x, means[:, i], label="Prediction", style="pred")
    plt.fill_between(x, lowers[:, i], uppers[:, i], style="pred")
    plt.scatter(x, y[:, i], label="Truth", style="test")
    plt.scatter(x, y_obs[:, i], label="Observations", style="train")
    plt.ylabel(f"Output {i + 1}")
    wbml.plot.tweak(legend=i == 0)

plt.tight_layout()
Exemple #7
0
    # Fit and predict GPAR.
    model = GPARRegressor(
        scale=0.1,
        linear=True,
        linear_scale=10.0,
        nonlinear=True,
        nonlinear_scale=0.1,
        noise=0.1,
        impute=True,
        replace=False,
        normalise_y=False,
    )
    model.fit(x_obs, y_obs)
    means, lowers, uppers = model.predict(x,
                                          num_samples=200,
                                          credible_bounds=True,
                                          latent=True)

    # Fit and predict independent GPs: set `markov=0` in GPAR.
    igp = GPARRegressor(
        scale=0.1,
        linear=True,
        linear_scale=10.0,
        nonlinear=True,
        nonlinear_scale=0.1,
        noise=0.1,
        markov=0,
        normalise_y=False,
    )
    igp.fit(x_obs, y_obs)
    igp_means, igp_lowers, igp_uppers = igp.predict(x,