def singlets_triplets(self):
        """Split yourself into singlet and triplet transitions"""

        assert(self.fullkss.npspins == 2)
        assert(self.fullkss.nvspins == 1)

        # strip kss from down spins
        skss = KSSingles()
        tkss = KSSingles()
        map = []
        for ij, ks in enumerate(self.fullkss):
            if ks.pspin == ks.spin:
                skss.append((ks + ks) / sqrt(2))
                tkss.append((ks - ks) / sqrt(2))
                map.append(ij)

        nkss = len(skss)

        # define the singlet and the triplet omega-matrixes
        sOm = OmegaMatrix(kss=skss)
        sOm.full = np.empty((nkss, nkss))
        tOm = OmegaMatrix(kss=tkss)
        tOm.full = np.empty((nkss, nkss))
        for ij in range(nkss):
            for kl in range(nkss):
                sOm.full[ij, kl] = (self.full[map[ij], map[kl]] +
                                    self.full[map[ij], nkss + map[kl]])
                tOm.full[ij, kl] = (self.full[map[ij], map[kl]] -
                                    self.full[map[ij], nkss + map[kl]])
        return sOm, tOm
Exemple #2
0
    def singlets_triplets(self):
        """Split yourself into singlet and triplet transitions"""

        assert(self.fullkss.npspins == 2)
        assert(self.fullkss.nvspins == 1)
        
        # strip kss from down spins
        skss = KSSingles()
        tkss = KSSingles()
        map = []
        for ij, ks in enumerate(self.fullkss):
            if ks.pspin == ks.spin:
                skss.append((ks + ks) / sqrt(2))
                tkss.append((ks - ks) / sqrt(2))
                map.append(ij)
            
        nkss = len(skss)

        # define the singlet and the triplet omega-matrixes
        sOm = OmegaMatrix(kss=skss)
        sOm.full = np.empty((nkss, nkss))
        tOm = OmegaMatrix(kss=tkss)
        tOm.full = np.empty((nkss, nkss))
        for ij in range(nkss):
            for kl in range(nkss):
                sOm.full[ij, kl] = (self.full[map[ij], map[kl]] +
                                    self.full[map[ij], nkss + map[kl]])
                tOm.full[ij, kl] = (self.full[map[ij], map[kl]] -
                                    self.full[map[ij], nkss + map[kl]])
        return sOm, tOm
    def get_map(self, istart=None, jend=None, energy_range=None):
        """Return the reduction map for the given requirements"""

        self.istart = istart
        self.jend = jend
        if istart is None and jend is None and energy_range is None:
            return None, self.fullkss

        # reduce the matrix
        print('# diagonalize: %d transitions original'
              % len(self.fullkss), file=self.txt)

        if energy_range is None:
            if istart is None:
                istart = self.kss.istart
            if self.fullkss.istart > istart:
                raise RuntimeError('istart=%d has to be >= %d' %
                                   (istart, self.kss.istart))
            if jend is None:
                jend = self.kss.jend
            if self.fullkss.jend < jend:
                raise RuntimeError('jend=%d has to be <= %d' %
                                   (jend, self.kss.jend))

        else:
            try:
                emin, emax = energy_range
            except:
                emax = energy_range
                emin = 0.
            emin /= Hartree
            emax /= Hartree

        map = []
        kss = KSSingles()
        for ij, k in zip(range(len(self.fullkss)), self.fullkss):
            if energy_range is None:
                if k.i >= istart and k.j <= jend:
                    kss.append(k)
                    map.append(ij)
            else:
                if k.energy >= emin and k.energy < emax:
                    kss.append(k)
                    map.append(ij)
        kss.update()
        print('# diagonalize: %d transitions now' % len(kss), file=self.txt)

        return map, kss
Exemple #4
0
    def get_map(self, istart=None, jend=None, energy_range=None):
        """Return the reduction map for the given requirements"""

        self.istart = istart
        self.jend = jend
        if istart is None and jend is None and energy_range is None:
            return None, self.fullkss

        # reduce the matrix
        print >> self.txt,'# diagonalize: %d transitions original'\
                  % len(self.fullkss)

        if energy_range is None:
            if istart is None: istart = self.kss.istart
            if self.fullkss.istart > istart:
                raise RuntimeError('istart=%d has to be >= %d' %
                                   (istart, self.kss.istart))
            if jend is None: jend = self.kss.jend
            if self.fullkss.jend < jend:
                raise RuntimeError('jend=%d has to be <= %d' %
                                   (jend, self.kss.jend))

        else:
            try:
                emin, emax = energy_range
            except:
                emax = energy_range
                emin = 0.
            emin /= Hartree
            emax /= Hartree

        map= []
        kss = KSSingles()
        for ij, k in zip(range(len(self.fullkss)), self.fullkss):
            if energy_range is None:
                if k.i >= istart and k.j <= jend:
                    kss.append(k)
                    map.append(ij)
            else:
                if k.energy >= emin and k.energy < emax:
                    kss.append(k)
                    map.append(ij)
        kss.update()
        print >> self.txt, '# diagonalize: %d transitions now' % len(kss)
            
        return map, kss