def old_distribute_cpus(parsize_domain, parsize_bands,
                        nspins, nibzkpts, comm=world,
                        idiotproof=True, mode='fd'):
    """Distribute k-points/spins to processors.

    Construct communicators for parallelization over
    k-points/spins and for parallelization using domain
    decomposition."""

    size = comm.size
    rank = comm.rank

    nsk = nspins * nibzkpts

    if mode in ['fd', 'lcao']:
        if parsize_bands is None:
            parsize_bands = 1

        if parsize_domain is not None:
            if type(parsize_domain) is int:
                ndomains = parsize_domain
            else:
                ndomains = (parsize_domain[0] *
                            parsize_domain[1] *
                            parsize_domain[2])
            assert (size // parsize_bands) % ndomains == 0

        else:
            ntot = nsk * parsize_bands
            ndomains = size // gcd(ntot, size)
    else:
        # Plane wave mode:
        ndomains = 1
        if parsize_bands is None:
            parsize_bands = size // gcd(nsk, size)

    assert size % parsize_bands == 0
        
    # How many spin/k-point combinations do we get per node:
    nu, x = divmod(nsk, size // parsize_bands // ndomains)
    assert x == 0 or nu >= 2 or not idiotproof, 'load imbalance!'

    r0 = (rank // ndomains) * ndomains
    ranks = np.arange(r0, r0 + ndomains)
    domain_comm = comm.new_communicator(ranks)

    r0 = rank % (ndomains * parsize_bands)
    ranks = np.arange(r0, r0 + size, ndomains * parsize_bands)
    kpt_comm = comm.new_communicator(ranks)

    r0 = rank % ndomains + kpt_comm.rank * (ndomains * parsize_bands)
    ranks = np.arange(r0, r0 + (ndomains * parsize_bands), ndomains)
    band_comm = comm.new_communicator(ranks)

    assert size == domain_comm.size * kpt_comm.size * band_comm.size

    return domain_comm, kpt_comm, band_comm
Exemple #2
0
def distribute_cpus(parsize_domain, parsize_bands,
                    nspins, nibzkpts, comm=world,
                    idiotproof=True, mode='fd'):
    """Distribute k-points/spins to processors.

    Construct communicators for parallelization over
    k-points/spins and for parallelization using domain
    decomposition."""

    size = comm.size
    rank = comm.rank

    nsk = nspins * nibzkpts

    if mode in ['fd', 'lcao']:
        if parsize_bands is None:
            parsize_bands = 1

        if parsize_domain is not None:
            if type(parsize_domain) is int:
                ndomains = parsize_domain
            else:
                ndomains = (parsize_domain[0] *
                            parsize_domain[1] *
                            parsize_domain[2])
            assert (size // parsize_bands) % ndomains == 0

        else:
            ntot = nsk * parsize_bands
            ndomains = size // gcd(ntot, size)
    else:
        # Plane wave mode:
        ndomains = 1
        if parsize_bands is None:
            parsize_bands = size // gcd(nsk, size)

    assert size % parsize_bands == 0
        
    # How many spin/k-point combinations do we get per node:
    nu, x = divmod(nsk, size // parsize_bands // ndomains)
    assert x == 0 or nu >= 2 or not idiotproof, 'load imbalance!'

    r0 = (rank // ndomains) * ndomains
    ranks = np.arange(r0, r0 + ndomains)
    domain_comm = comm.new_communicator(ranks)

    r0 = rank % (ndomains * parsize_bands)
    ranks = np.arange(r0, r0 + size, ndomains * parsize_bands)
    kpt_comm = comm.new_communicator(ranks)

    r0 = rank % ndomains + kpt_comm.rank * (ndomains * parsize_bands)
    ranks = np.arange(r0, r0 + (ndomains * parsize_bands), ndomains)
    band_comm = comm.new_communicator(ranks)

    assert size == domain_comm.size * kpt_comm.size * band_comm.size

    return domain_comm, kpt_comm, band_comm
def create_parsize_maxbands(nbands, world_size):
    """Safely parse command line parallel arguments for band parallel case."""
    # D: number of domains
    # B: number of band groups
    if parsize_bands is None:
        if parsize_domain is None:
            B = gcd(nbands, world_size)  # largest possible
            D = world_size // B
        else:
            D = parsize_domain
            B = gcd(nbands, world_size // np.prod(D))
    else:
        B = parsize_bands
        D = parsize_domain or world_size // B
    return D, B
def create_parsize_maxbands(nbands, world_size):
    """Safely parse command line parallel arguments for band parallel case."""
    # D: number of domains
    # B: number of band groups   
    if parsize_bands is None:
        if parsize_domain is None:
            B = gcd(nbands, world_size) # largest possible
            D = world_size // B
        else:
            D = parsize_domain
            B = gcd(nbands, world_size // np.prod(D))
    else:
        B = parsize_bands
        D = parsize_domain or world_size // B
    return D, B
Exemple #5
0
    def get_parsizes(self): #XXX NO LONGER IN UT_HSOPS?!?
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize_domain, parsize_bands

        # Choose the largest possible parallelization over kpoint/spins
        test_parsize_ks_pairs = gcd(self.nspins*self.nibzkpts, world.size)
        remsize = world.size//test_parsize_ks_pairs

        # If parsize_bands is not set, choose the largest possible
        test_parsize_bands = parsize_bands or gcd(self.nbands, remsize)

        # If parsize_bands is not set, choose as few domains as possible
        test_parsize_domain = parsize_domain or (remsize//test_parsize_bands)

        return test_parsize_domain, test_parsize_bands
Exemple #6
0
    def get_parsizes(self): #XXX NO LONGER IN UT_HSOPS?!?
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize, parsize_bands

        # Choose the largest possible parallelization over kpoint/spins
        test_parsize_ks_pairs = gcd(self.nspins*self.nibzkpts, world.size)
        remsize = world.size//test_parsize_ks_pairs

        # If parsize_bands is not set, choose the largest possible
        test_parsize_bands = parsize_bands or gcd(self.nbands, remsize)

        # If parsize_bands is not set, choose as few domains as possible
        test_parsize = parsize or (remsize//test_parsize_bands)

        return test_parsize, test_parsize_bands
Exemple #7
0
    def setUp(self):
        for virtvar in ['boundaries', 'celltype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]
        a, b = self.a, 2**0.5*self.a
        cell_cv = {'general'   : np.array([[0,a,a],[a/2,0,a/2],[a/2,a/2,0]]),
                   'rotated'   : np.array([[0,0,b],[b/2,0,0],[0,b/2,0]]),
                   'inverted'   : np.array([[0,0,b],[0,b/2,0],[b/2,0,0]]),
                   'orthogonal': np.diag([b, b/2, b/2])}[self.celltype]
        cell_cv = np.array([(4-3*pbc)*c_v for pbc,c_v in zip(pbc_c, cell_cv)])

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil((10/Bohr)/np.sum(cell_cv**2,axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c*pbc_c + 1-pbc_c)
        bzk_kc = kpts2ndarray(kpts_c)
        self.gamma = len(bzk_kc) == 1 and not bzk_kc[0].any()

        #p = InputParameters()
        #Z_a = self.atoms.get_atomic_numbers()
        #xcfunc = XC(p.xc)
        #setups = Setups(Z_a, p.setups, p.basis, p.lmax, xcfunc)
        #symmetry, weight_k, self.ibzk_kc = reduce_kpoints(self.atoms, bzk_kc,
        #                                                  setups, p.usesymm)

        self.ibzk_kc = bzk_kc.copy() # don't use symmetry reduction of kpoints
        self.nibzkpts = len(self.ibzk_kc)
        self.ibzk_kv = kpoint_convert(cell_cv, skpts_kc=self.ibzk_kc)

        # Parse parallelization parameters and create suitable communicators.
        #parsize_domain, parsize_bands = create_parsize_minbands(self.nbands, world.size)
        parsize_domain, parsize_bands = world.size//gcd(world.size, self.nibzkpts), 1
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize_domain,
            parsize_bands, self.nspins, self.nibzkpts)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        N_c = np.round(np.sum(cell_cv**2, axis=1)**0.5 / self.h)
        N_c += 4-N_c % 4 # makes domain decomposition easier
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize_domain)
        self.assertEqual(self.gamma, np.all(~self.gd.pbc_c))

        # What to do about kpoints?
        self.kpt_comm = kpt_comm

        if debug and world.rank == 0:
            comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kpt_comm]])
            print '%d world, %d band, %d domain, %d kpt' % comm_sizes
Exemple #8
0
    def setUp(self):
        for virtvar in ['boundaries', 'celltype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]
        a, b = self.a, 2**0.5*self.a
        cell_cv = {'general'   : np.array([[0,a,a],[a/2,0,a/2],[a/2,a/2,0]]),
                   'rotated'   : np.array([[0,0,b],[b/2,0,0],[0,b/2,0]]),
                   'inverted'   : np.array([[0,0,b],[0,b/2,0],[b/2,0,0]]),
                   'orthogonal': np.diag([b, b/2, b/2])}[self.celltype]
        cell_cv = np.array([(4-3*pbc)*c_v for pbc,c_v in zip(pbc_c, cell_cv)])

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil((10/Bohr)/np.sum(cell_cv**2,axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c*pbc_c + 1-pbc_c)
        bzk_kc = kpts2ndarray(kpts_c)
        self.gamma = len(bzk_kc) == 1 and not bzk_kc[0].any()

        #p = InputParameters()
        #Z_a = self.atoms.get_atomic_numbers()
        #xcfunc = XC(p.xc)
        #setups = Setups(Z_a, p.setups, p.basis, p.lmax, xcfunc)
        #symmetry, weight_k, self.ibzk_kc = reduce_kpoints(self.atoms, bzk_kc,
        #                                                  setups, p.usesymm)

        self.ibzk_kc = bzk_kc.copy() # don't use symmetry reduction of kpoints
        self.nibzkpts = len(self.ibzk_kc)
        self.ibzk_kv = kpoint_convert(cell_cv, skpts_kc=self.ibzk_kc)

        # Parse parallelization parameters and create suitable communicators.
        #parsize, parsize_bands = create_parsize_minbands(self.nbands, world.size)
        parsize, parsize_bands = world.size//gcd(world.size, self.nibzkpts), 1
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize,
            parsize_bands, self.nspins, self.nibzkpts)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        N_c = np.round(np.sum(cell_cv**2, axis=1)**0.5 / self.h)
        N_c += 4-N_c % 4 # makes domain decomposition easier
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize)
        self.assertEqual(self.gamma, np.all(~self.gd.pbc_c))

        # What to do about kpoints?
        self.kpt_comm = kpt_comm

        if debug and world.rank == 0:
            comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kpt_comm]])
            print '%d world, %d band, %d domain, %d kpt' % comm_sizes
def frac(f, n=2 * 3 * 4 * 5):
    if not isinstance(f, (int, float)):
        return np.array([frac(a, n) for a in f]).T
    if f == 0:
        return 0, 1
    x = n * f
    if abs(x - round(x)) > 1e-6:
        raise ValueError
    x = int(round(x))
    d = gcd(x, n)
    return x // d, n // d
Exemple #10
0
def frac(f, n=2 * 3 * 4 * 5):
    if not isinstance(f, (int, float)):
        return np.array([frac(a, n) for a in f]).T
    if f == 0:
        return 0, 1
    x = n * f
    if abs(x - round(x)) > 1e-6:
        raise ValueError
    x = int(round(x))
    d = gcd(x, n)
    return x // d, n // d
def distribute_cpus(parsize_domain, parsize_bands,
                    nspins, nibzkpts, comm=world,
                    idiotproof=True, mode='fd'):
    nsk = nspins * nibzkpts
    if mode in ['fd', 'lcao']:
        if parsize_bands is None:
            parsize_bands = 1
    else:
        # Plane wave mode:
        if parsize_bands is None:
            parsize_bands = comm.size // gcd(nsk, comm.size)

    p = Parallelization(comm, nsk)
    return p.build_communicators(domain=np.prod(parsize_domain),
                                 band=parsize_bands)
N = 2000  # number of bands
repeats = 1

try:
    N = int(sys.argv[1])
    J = int(sys.argv[2])
except (IndexError, ValueError):
    N = 6
    J = 3
    repeats = 3

# B: number of band groups
# D: number of domains
if parsize_bands is None:
    if parsize_domain is None:
        B = gcd(N, world.size)
        D = world.size // B
    else:
        B = world.size // np.prod(parsize_domain)
        D = parsize_domain
else:
    B = parsize_bands
    D = world.size // B

M = N // B     # number of bands per group
assert M * B == N, 'M=%d, B=%d, N=%d' % (M,B,N)

h = 0.2        # grid spacing
a = h * G      # side length of box
assert np.prod(D) * B == world.size, 'D=%s, B=%d, W=%d' % (D,B,world.size)
    def prune_symmetries_atoms(self, spos_ac):
        """Remove symmetries that are not satisfied by the atoms."""

        if len(spos_ac) == 0:
            return

        # Build lists of atom numbers for each type of atom - one
        # list for each combination of atomic number, setup type,
        # magnetic moment and basis set:
        a_ij = {}
        for a, id in enumerate(self.id_a):
            if id in a_ij:
                a_ij[id].append(a)
            else:
                a_ij[id] = [a]

        a_j = a_ij[self.id_a[0]]  # just pick the first species

        # if supercell disable fractional translations:
        if not self.symmorphic:
            op_cc = np.identity(3, int)
            ftrans_sc = spos_ac[a_j[1:]] - spos_ac[a_j[0]]
            ftrans_sc -= np.rint(ftrans_sc)
            for ft_c in ftrans_sc:
                a_a = self.check_one_symmetry(spos_ac, op_cc, ft_c, a_ij)
                if a_a is not None:
                    self.symmorphic = True
                    break

        symmetries = []
        ftsymmetries = []

        # go through all possible symmetry operations
        for op_cc in self.op_scc:
            # first ignore fractional translations
            a_a = self.check_one_symmetry(spos_ac, op_cc, [0, 0, 0], a_ij)
            if a_a is not None:
                symmetries.append((op_cc, [0, 0, 0], a_a))
            elif not self.symmorphic:
                # check fractional translations
                sposrot_ac = np.dot(spos_ac, op_cc)
                ftrans_jc = sposrot_ac[a_j] - spos_ac[a_j[0]]
                ftrans_jc -= np.rint(ftrans_jc)
                for ft_c in ftrans_jc:
                    try:
                        nom_c, denom_c = frac(ft_c)
                    except ValueError:
                        continue
                    ft_c = nom_c / denom_c
                    a_a = self.check_one_symmetry(spos_ac, op_cc, ft_c, a_ij)
                    if a_a is not None:
                        ftsymmetries.append((op_cc, ft_c, a_a))
                        for c, d in enumerate(denom_c):
                            self.gcd_c[c] = gcd(self.gcd_c[c] * d, d)

        # Add symmetry operations with fractional translations at the end:
        symmetries.extend(ftsymmetries)
        self.op_scc = np.array([sym[0] for sym in symmetries])
        self.ft_sc = np.array([sym[1] for sym in symmetries])
        self.a_sa = np.array([sym[2] for sym in symmetries])

        inv_cc = -np.eye(3, dtype=int)
        self.has_inversion = (self.op_scc == inv_cc).all(2).all(1).any()
N = 2000  # number of bands
repeats = 20

try:
    N = int(sys.argv[1])
    K = int(sys.argv[2])
except (IndexError, ValueError):
    N = 6
    K = 3
    repeats = 3

# B: number of band groups
# D: number of domains
if parsize_bands is None:
    if parsize_domain is None:
        B = gcd(N, world.size)
        D = world.size // B
    else:
        B = world.size // np.prod(parsize_domain)
        D = parsize_domain
else:
    B = parsize_bands
    D = world.size // B

M = N // B  # number of bands per group
assert M * B == N, 'M=%d, B=%d, N=%d' % (M, B, N)

h = 0.2  # grid spacing
a = h * G  # side length of box
assert np.prod(D) * B == world.size, 'D=%s, B=%d, W=%d' % (D, B, world.size)
Exemple #15
0
    def prune_symmetries_atoms(self, spos_ac):
        """Remove symmetries that are not satisfied by the atoms."""

        if len(spos_ac) == 0:
            return

        # Build lists of atom numbers for each type of atom - one
        # list for each combination of atomic number, setup type,
        # magnetic moment and basis set:
        a_ij = {}
        for a, id in enumerate(self.id_a):
            if id in a_ij:
                a_ij[id].append(a)
            else:
                a_ij[id] = [a]

        a_j = a_ij[self.id_a[0]]  # just pick the first species

        # if supercell disable fractional translations:
        if not self.symmorphic:
            op_cc = np.identity(3, int)
            ftrans_sc = spos_ac[a_j[1:]] - spos_ac[a_j[0]]
            ftrans_sc -= np.rint(ftrans_sc)
            for ft_c in ftrans_sc:
                a_a = self.check_one_symmetry(spos_ac, op_cc, ft_c, a_ij)
                if a_a is not None:
                    self.symmorphic = True
                    break

        symmetries = []
        ftsymmetries = []

        # go through all possible symmetry operations
        for op_cc in self.op_scc:
            # first ignore fractional translations
            a_a = self.check_one_symmetry(spos_ac, op_cc, [0, 0, 0], a_ij)
            if a_a is not None:
                symmetries.append((op_cc, [0, 0, 0], a_a))
            elif not self.symmorphic:
                # check fractional translations
                sposrot_ac = np.dot(spos_ac, op_cc)
                ftrans_jc = sposrot_ac[a_j] - spos_ac[a_j[0]]
                ftrans_jc -= np.rint(ftrans_jc)
                for ft_c in ftrans_jc:
                    try:
                        nom_c, denom_c = frac(ft_c)
                    except ValueError:
                        continue
                    ft_c = nom_c / denom_c
                    a_a = self.check_one_symmetry(spos_ac, op_cc, ft_c, a_ij)
                    if a_a is not None:
                        ftsymmetries.append((op_cc, ft_c, a_a))
                        for c, d in enumerate(denom_c):
                            self.gcd_c[c] = gcd(self.gcd_c[c] * d, d)

        # Add symmetry operations with fractional translations at the end:
        symmetries.extend(ftsymmetries)
        self.op_scc = np.array([sym[0] for sym in symmetries])
        self.ft_sc = np.array([sym[1] for sym in symmetries])
        self.a_sa = np.array([sym[2] for sym in symmetries])

        inv_cc = -np.eye(3, dtype=int)
        self.has_inversion = (self.op_scc == inv_cc).all(2).all(1).any()