Exemple #1
0
    def temporal_kernel(self):
        kernel = White(variance=self.model_config['noise_inner'])
        m_inds = list(range(self.m))
        # Initialize a non-linear kernels over inputs
        if self.model_config['input_nonlinear']:
            scales = [self.model_config['scale']
                      ] * self.m if self.model_config[
                          'scale_tie'] else self.model_config['scale']
            if self.model_config['rq']:
                kernel += RationalQuadratic(active_dims=m_inds,
                                            variance=1.0,
                                            lengthscales=scales,
                                            alpha=1e-2)
            else:
                kernel += SquaredExponential(active_dims=m_inds,
                                             variance=1.0,
                                             lengthscales=scales)
        # Add a periodic kernel over inputs
        # Decay?????
        if self.model_config['per']:
            scales = [self.model_config['per_scale']] * self.m
            periods = [self.model_config['per_period']] * self.m
            base_kernel = SquaredExponential(active_dims=m_inds,
                                             variance=1.0,
                                             lengthscales=scales)
            kernel += Periodic(base_kernel, period=periods)

        # Add a linear kernel over inputs
        if self.model_config['input_linear']:
            variances = [self.model_config['input_linear_scale']] * self.m
            kernel += LinearKernel(active_dims=m_inds, variance=variances)
        return kernel
Exemple #2
0
    def boosting_kernel(self):
        kernels = []
        if self.model_config['nonlinear']:
            if self.model_config['rq']:
                kernels.append(
                    RationalQuadratic(
                        variance=1.0,
                        lengthscales=self.model_config['nonlinear_scale'],
                        alpha=1e-2))
            else:
                kernels.append(
                    SquaredExponential(
                        variance=1.0,
                        lengthscales=self.model_config['nonlinear_scale']))

        if self.model_config['linear']:
            kernels.append(
                LinearKernel(variance=self.model_config['linear_scale']))

        kernel = kernels[0]
        for kerneli in kernels[1:]:
            kernel += kerneli
        return kernel
Exemple #3
0
    def _kernels_generator(self):
        def _determine_indicies(m, pi, markov):
            # Build in the Markov structure: juggle with the indices of the outputs.
            p_last = pi - 1  # Index of last output that is given as input.
            p_start = 0 if markov is None else max(p_last - (markov - 1), 0)
            p_num = p_last - p_start + 1

            # Determine the indices corresponding to the outputs and inputs.
            m_inds = list(range(m))
            p_inds = list(range(m + p_start, m + p_last + 1))

            return m_inds, p_inds, p_num

        kernels = []
        for pi in range(self.num_outputs):
            m_inds, p_inds, p_num = _determine_indicies(
                self.m, pi, self.model_config['markov'])
            # Construct inner-layers noise kernel
            kernel = White(variance=self.model_config['noise_inner'])
            # Initialize a non-linear kernels over inputs
            #if pi==0:
            scales = [self.model_config['scale']
                      ] * self.m if self.model_config[
                          'scale_tie'] else self.model_config['scale']
            if self.model_config['rq']:
                kernel += RationalQuadratic(active_dims=m_inds,
                                            variance=1.0,
                                            lengthscales=scales,
                                            alpha=1e-2)
            else:
                kernel += SquaredExponential(active_dims=m_inds,
                                             variance=1.0,
                                             lengthscales=scales)
            # Add a periodic kernel over inputs
            # Decay?????
            if self.model_config['per']:
                scales = [self.model_config['per_scale']] * self.m
                periods = [self.model_config['per_period']] * self.m
                base_kernel = SquaredExponential(active_dims=m_inds,
                                                 variance=1.0,
                                                 lengthscales=scales)
                kernel += Periodic(base_kernel, period=periods)

            # Add a linear kernel over inputs
            if self.model_config['input_linear']:
                variances = [self.model_config['input_linear_scale']] * self.m
                kernel += LinearKernel(active_dims=m_inds, variance=variances)
            # Add a linear kernel over outputs
            if self.model_config['linear'] and pi > 0:
                variances = [self.model_config['linear_scale']] * p_num
                kernel += LinearKernel(active_dims=p_inds, variance=variances)

            # Add a non-linear kernel over outputs
            if self.model_config['nonlinear'] and pi > 0:
                if self.model_config['nonlinear_dependent']:
                    active_dims = m_inds.extend(p_inds)
                    scales = [self.model_config['scale']] * self.m
                    scales.extend([self.model_config['nonlinear_scale']] *
                                  p_num)
                else:
                    active_dims = p_inds
                    scales = [self.model_config['nonlinear_scale']] * p_num
                if self.model_config['rq']:
                    kernel += RationalQuadratic(active_dims=active_dims,
                                                variance=1.0,
                                                lengthscales=scales,
                                                alpha=1e-2)
                else:
                    kernel += SquaredExponential(active_dims=active_dims,
                                                 variance=1.0,
                                                 lengthscales=scales)

            kernels.append(kernel)

        return kernels