def _kern():
                kern_thin_layer = ThinLayer(np.array([0., 0., 0.]),
                                            priors['tec_scale'],
                                            active_dims=slice(2, 6, 1))
                kern_time = Matern32(1, active_dims=slice(6, 7, 1))
                kern_dir = Matern32(2, active_dims=slice(0, 2, 1))

                ###
                # time kern
                kern_time.lengthscales = np.exp(tec_kern_time_ls[0])
                kern_time.lengthscales.prior = LogNormal(
                    tec_kern_time_ls[0], tec_kern_time_ls[1]**2)
                kern_time.lengthscales.set_trainable(True)

                kern_time.variance = 1.  #np.exp(tec_kern_var[0])
                #kern_time.variance.prior = LogNormal(tec_kern_var[0],tec_kern_var[1]**2)
                kern_time.variance.set_trainable(False)  #

                ###
                # directional kern
                kern_dir.variance = np.exp(tec_kern_var[0])
                kern_dir.variance.prior = LogNormal(tec_kern_var[0],
                                                    tec_kern_var[1]**2)
                kern_dir.variance.set_trainable(True)

                kern_dir.lengthscales = np.exp(tec_kern_dir_ls[0])
                kern_dir.lengthscales.prior = LogNormal(
                    tec_kern_dir_ls[0], tec_kern_dir_ls[1]**2)
                kern_dir.lengthscales.set_trainable(True)

                kern = kern_dir * kern_time  #(kern_thin_layer + kern_dir)*kern_time
                return kern
Exemple #2
0
def init_kern_act(num_pitches):
    """Initialize kernels for activations and components"""

    kern_act = []

    for i in range(num_pitches):
        kern_act.append(Matern32(1, lengthscales=1.0, variance=3.5))
    return kern_act
Exemple #3
0
def main():

    dataname = "1DGP_MaternCombo1"
    ptr = "data/toy_data/" + dataname + '/'
    n_functions = 1000
    lengthscales = 1.0
    kernel = Matern52(variance=1.0, lengthscales=2.0) + Matern32(
        variance=2.0, lengthscales=1.0)
    data_generator = GPDataGenerator(kernel=kernel)

    x_trains = []
    y_trains = []
    x_tests = []
    y_tests = []

    #Generate n_functions sets of values of x in the range [min_x, max_x], to be used for training and testing
    plt.figure()
    for i in range(n_functions):
        if i % (n_functions // 5) == 0:
            n_train = np.random.randint(low=5, high=10)
            n_test = 20

        else:
            n_train = np.random.randint(low=25, high=100)
            n_test = int(0.2 * n_train)

        x_train, y_train, x_test, y_test = data_generator.sample(
            train_size=n_train, test_size=n_test, x_min=-3, x_max=3)
        x_trains.append(x_train)
        y_trains.append(y_train)
        x_tests.append(x_test)
        y_tests.append(y_test)

        if i == 0:
            plt.scatter(x_train, y_train, c='r', s=1, label="train")
            plt.scatter(x_test, y_test, c="magenta", s=1, label="test")
        elif i == 1:
            plt.scatter(x_train, y_train, c='black', s=1, label="train")
            plt.scatter(x_test, y_test, c="yellow", s=1, label="test")
        elif i == 2:
            plt.scatter(x_train, y_train, c='b', s=1, label="train")
            plt.scatter(x_test, y_test, c="g", s=1, label="test")
    plt.legend()
    plt.xlabel("x")
    plt.xticks([])
    plt.ylabel('f(x)')
    plt.yticks([])
    plt.show()

    x_trains = np.array(x_trains)
    y_trains = np.array(y_trains)
    x_tests = np.array(x_tests)
    y_tests = np.array(y_tests)

    np.save(ptr + dataname + "_X_trains.npy", x_trains)
    np.save(ptr + dataname + "_y_trains.npy", y_trains)
    np.save(ptr + dataname + "_X_tests.npy", x_tests)
    np.save(ptr + dataname + "_y_tests.npy", y_tests)
Exemple #4
0
def test_gaussian_mean_and_variance(Ntrain, Ntest, D):
    data = rng.randn(Ntrain, D), rng.randn(Ntrain, 1)
    Xtest, _ = rng.randn(Ntest, D), rng.randn(Ntest, 1)
    kernel = Matern32() + gpflow.kernels.White()
    model_gp = gpflow.models.GPR(data, kernel=kernel)

    mu_f, var_f = model_gp.predict_f(Xtest)
    mu_y, var_y = model_gp.predict_y(Xtest)

    assert np.allclose(mu_f, mu_y)
    assert np.allclose(var_f, var_y - 1.)
Exemple #5
0
def test_gaussian_full_cov_samples(input_dim, output_dim, N, Ntest, M,
                                   num_samples):
    samples_shape = (num_samples, Ntest, output_dim)
    X, Y, _ = rng.randn(N, input_dim), rng.randn(N, output_dim), rng.randn(
        M, input_dim)
    Xtest = rng.randn(Ntest, input_dim)
    kernel = Matern32()
    model_gp = gpflow.models.GPR([X, Y], kernel=kernel)

    samples = model_gp.predict_f_samples(Xtest, num_samples)
    assert samples.shape == samples_shape
Exemple #6
0
def test_gaussian_log_density(Ntrain, Ntest, D):
    data = rng.randn(Ntrain, D), rng.randn(Ntrain, 1)
    Xtest, Ytest = rng.randn(Ntest, D), rng.randn(Ntest, 1)
    kernel = Matern32() + gpflow.kernels.White()
    model_gp = gpflow.models.GPR(data, kernel=kernel)

    mu_y, var_y = model_gp.predict_y(Xtest)
    data = Xtest, Ytest
    log_density = model_gp.predict_log_density(data)
    log_density_hand = (-0.5 * np.log(2 * np.pi) - 0.5 * np.log(var_y) -
                        0.5 * np.square(mu_y - Ytest) / var_y)

    assert np.allclose(log_density_hand, log_density)
Exemple #7
0
    def _build_kernel(self, kern_dir_ls=0.3, kern_time_ls=50., kern_var=1., include_time=True, include_dir=True, **priors):

        kern_var = 1. if kern_var == 0. else kern_var

        kern_dir = Matern32(2,active_dims=slice(0,2,1))
        kern_dir.variance.trainable = False
        
        kern_dir.lengthscales = kern_dir_ls
        kern_dir_ls = log_normal_solve(kern_dir_ls, 0.5*kern_dir_ls)
        kern_dir.lengthscales.prior = LogNormal(kern_dir_ls[0], kern_dir_ls[1]**2)
        kern_dir.lengthscales.trainable = False#True

        kern_time = Matern32(1,active_dims=slice(2,3,1))
        
        kern_time.variance = kern_var
        kern_var = log_normal_solve(kern_var,0.5*kern_var)
        kern_time.variance.prior = LogNormal(kern_var[0], kern_var[1]**2)
        kern_time.variance.trainable = False#True

        kern_time.lengthscales = kern_time_ls
        kern_time_ls = log_normal_solve(kern_time_ls, 0.5*kern_time_ls)
        kern_time.lengthscales.prior = LogNormal(kern_time_ls[0], kern_time_ls[1]**2)
        kern_time.lengthscales.trainable = False#True

        kern_white = gp.kernels.White(3)
        kern_white.variance = 1.
        kern_time.variance.trainable = False#True

        if include_time:
            if include_dir:
                return kern_dir*kern_time
            return kern_time
        else:
            if include_dir:
                kern_dir.variance.trainable = True
                return kern_dir
            return kern_white

        return kern_dir*kern_time
Exemple #8
0
def test_gaussian_full_cov(input_dim, output_dim, N, Ntest, M):
    covar_shape = (output_dim, Ntest, Ntest)
    X, Y, Z = rng.randn(N, input_dim), rng.randn(N, output_dim), rng.randn(
        M, input_dim)
    Xtest = rng.randn(Ntest, input_dim)
    kernel = Matern32()
    model_gp = gpflow.models.GPR([X, Y], kernel=kernel)

    mu1, var = model_gp.predict_f(Xtest, full_cov=False)
    mu2, covar = model_gp.predict_f(Xtest, full_cov=True)

    assert np.allclose(mu1, mu2, atol=1.e-10)
    assert covar.shape == covar_shape
    assert var.shape == (Ntest, output_dim)
    for i in range(output_dim):
        assert np.allclose(var[:, i], np.diag(covar[i, :, :]))
Exemple #9
0
 def __init__(self,
              model_class,
              kernel=Matern32(),
              likelihood=gpflow.likelihoods.Gaussian(),
              whiten=None,
              q_diag=None,
              requires_inducing_variables=True,
              requires_data=False,
              requires_likelihood=True):
     self.model_class = model_class
     self.kernel = kernel
     self.likelihood = likelihood
     self.whiten = whiten
     self.q_diag = q_diag
     self.requires_inducing_variables = requires_inducing_variables
     self.requires_data = requires_data
     self.requires_likelihood = requires_likelihood
Exemple #10
0
def init_kern(num_pitches, energy, frequency):
    """Initialize kernels for activations and components"""
    k_act, k_com = [], []
    k_com_a, k_com_b = [], []
    for i in range(num_pitches):
        k_act.append(Matern32(1, lengthscales=0.25, variance=3.5))

        k_com_a.append(Matern52(1, lengthscales=0.25, variance=1.0))
        k_com_a[i].variance.fixed = True
        k_com_a[i].lengthscales.transform = gpflow.transforms.Logistic(0., 0.5)
        k_com_b.append(
            MercerCosMix(input_dim=1,
                         energy=energy[i].copy(),
                         frequency=frequency[i].copy(),
                         variance=0.25,
                         features_as_params=False))
        k_com_b[i].fixed = True
        k_com.append(k_com_a[i] * k_com_b[i])
    kern = [k_act, k_com]
    return kern
Exemple #11
0
 def __init__(self, h: Bandwidth, variance: float):
     super().__init__(name="Matern32")
     self.kernel = Matern32(variance=variance)
     self.h = h
Exemple #12
0
#####################################
###### Test Dataset Parameters ######
#####################################

ip = 0.  # Intervention point
dc = 1.0  # Discontinuity
sigma = 0.5  # Standard deviation
sigma_d = 0.  # Value added to the standard deviation after the intervention point
n = 20  # Number of data points

############################
###### Kernel Options ######
############################

Matern = Matern32()
linear_kernel = Linear() + Constant()  # "Linear" kernel
exp_kernel = Exponential()
RBF_kernel = SquaredExponential()

kernel_names = ['Linear', 'Exponential', 'Gaussian', 'Matern', 'BMA']
kernels = [linear_kernel, exp_kernel, RBF_kernel, Matern]
# make a dictionary that zips the kernel names with the corresponding kernel
kernel_dict = dict(zip(
    kernel_names,
    kernels))  # making a dictionary of kernels and their corresponding names


###########################################
###### Generation of Test Dataset ######
###########################################
Exemple #13
0
class Container(dict, tf.Module):
    def __init__(self):
        super().__init__()


res = {
    'ckv': list(),
    'ckl': list(),
    'clv': list(),
    'dkv': list(),
    'dkl': list(),
    'dlv': list()
}

kernels = [Linear() + Constant(), RBF(), Matern32(), Exponential()]

SHOW_PLOTS = 1
epochs = 5

container = Container()

for e in range(epochs):

    print(f'epoch {e}')
    np.random.seed(e)
    '''
    n = 100  # Number of data points

    x = np.linspace(-3, 3, n)  # Evenly distributed x values