Exemple #1
0
        def main(config):
            assert config is not None, ValueError
            tf.random.set_seed(config.seed)
            gpflow_config.set_default_float(config.floatx)
            gpflow_config.set_default_jitter(config.jitter)

            X = tf.random.uniform([config.num_test, config.input_dims],
                                  dtype=floatx())
            Z_shape = config.num_cond, config.input_dims
            for cls in SupportedBaseKernels:
                minval = config.rel_lengthscales_min * (config.input_dims**0.5)
                maxval = config.rel_lengthscales_max * (config.input_dims**0.5)
                lenscales = tf.random.uniform(shape=[config.input_dims],
                                              minval=minval,
                                              maxval=maxval,
                                              dtype=floatx())

                q_sqrt = tf.zeros([1] + 2 * [config.num_cond], dtype=floatx())
                kern = cls(lengthscales=lenscales,
                           variance=config.kernel_variance)
                Z = InducingPoints(tf.random.uniform(Z_shape, dtype=floatx()))

                const = tf.random.normal([1], dtype=floatx())
                model = SVGP(kernel=kern,
                             likelihood=None,
                             inducing_variable=Z,
                             mean_function=mean_functions.Constant(c=const),
                             q_sqrt=q_sqrt)

                mf, Sff = subroutine(config, model, X)
                mg, Sgg = model.predict_f(X, full_cov=True)

                tol = config.error_tol
                assert allclose(mf, mg, tol, tol)
                assert allclose(Sff, Sgg, tol, tol)
Exemple #2
0
        def main(config):
            assert config is not None, ValueError
            tf.random.set_seed(config.seed)
            gpflow_config.set_default_float(config.floatx)
            gpflow_config.set_default_jitter(config.jitter)

            X = tf.random.uniform([config.num_test, config.input_dims],
                                  dtype=floatx())
            allK = []
            allZ = []
            Z_shape = config.num_cond, config.input_dims
            for cls in SupportedBaseKernels:
                minval = config.rel_lengthscales_min * (config.input_dims**0.5)
                maxval = config.rel_lengthscales_max * (config.input_dims**0.5)
                lenscales = tf.random.uniform(shape=[config.input_dims],
                                              minval=minval,
                                              maxval=maxval,
                                              dtype=floatx())

                rel_variance = tf.random.uniform(shape=[],
                                                 minval=0.9,
                                                 maxval=1.1,
                                                 dtype=floatx())

                allK.append(
                    cls(lengthscales=lenscales,
                        variance=config.kernel_variance * rel_variance))

                allZ.append(
                    InducingPoints(tf.random.uniform(Z_shape, dtype=floatx())))

            kern = kernels.SeparateIndependent(allK)
            Z = SeparateIndependentInducingVariables(allZ)

            Kuu = covariances.Kuu(Z,
                                  kern,
                                  jitter=gpflow_config.default_jitter())
            q_sqrt = tf.linalg.cholesky(Kuu)\
                     * tf.random.uniform(shape=[kern.num_latent_gps, 1, 1],
                                         minval=0.0,
                                         maxval=0.5,
                                         dtype=floatx())

            const = tf.random.normal([len(kern.kernels)], dtype=floatx())
            model = SVGP(kernel=kern,
                         likelihood=None,
                         inducing_variable=Z,
                         mean_function=mean_functions.Constant(c=const),
                         q_sqrt=q_sqrt,
                         whiten=False,
                         num_latent_gps=len(allK))

            mf, Sff = subroutine(config, model, X)
            mg, Sgg = model.predict_f(X, full_cov=True)
            tol = config.error_tol
            assert allclose(mf, mg, tol, tol)
            assert allclose(Sff, Sgg, tol, tol)
Exemple #3
0
        def main(config):
            assert config is not None, ValueError
            tf.random.set_seed(config.seed)
            gpflow_config.set_default_float(config.floatx)
            gpflow_config.set_default_jitter(config.jitter)

            X = tf.random.uniform([config.num_test, config.input_dims],
                                  dtype=floatx())
            Z_shape = config.num_cond, config.input_dims
            for cls in SupportedBaseKernels:
                minval = config.rel_lengthscales_min * (config.input_dims**0.5)
                maxval = config.rel_lengthscales_max * (config.input_dims**0.5)
                lenscales = tf.random.uniform(shape=[config.input_dims],
                                              minval=minval,
                                              maxval=maxval,
                                              dtype=floatx())

                base = cls(lengthscales=lenscales,
                           variance=config.kernel_variance)
                kern = kernels.SharedIndependent(base, output_dim=2)

                Z = SharedIndependentInducingVariables(
                    InducingPoints(tf.random.uniform(Z_shape, dtype=floatx())))
                Kuu = covariances.Kuu(Z,
                                      kern,
                                      jitter=gpflow_config.default_jitter())
                q_sqrt = tf.stack([
                    tf.zeros(2 * [config.num_cond], dtype=floatx()),
                    tf.linalg.cholesky(Kuu)
                ])

                const = tf.random.normal([2], dtype=floatx())
                model = SVGP(kernel=kern,
                             likelihood=None,
                             inducing_variable=Z,
                             mean_function=mean_functions.Constant(c=const),
                             q_sqrt=q_sqrt,
                             whiten=False,
                             num_latent_gps=2)

                mf, Sff = subroutine(config, model, X)
                mg, Sgg = model.predict_f(X, full_cov=True)
                tol = config.error_tol
                assert allclose(mf, mg, tol, tol)
                assert allclose(Sff, Sgg, tol, tol)
Exemple #4
0
        def main(config):
            assert config is not None, ValueError
            tf.random.set_seed(config.seed)
            gpflow_config.set_default_float(config.floatx)
            gpflow_config.set_default_jitter(config.jitter)

            X = tf.random.uniform([config.num_cond, config.input_dims],
                                  dtype=floatx())
            Xnew = tf.random.uniform([config.num_test, config.input_dims],
                                     dtype=floatx())
            for cls in SupportedBaseKernels:
                minval = config.rel_lengthscales_min * (config.input_dims**0.5)
                maxval = config.rel_lengthscales_max * (config.input_dims**0.5)
                lenscales = tf.random.uniform(shape=[config.input_dims],
                                              minval=minval,
                                              maxval=maxval,
                                              dtype=floatx())

                kern = cls(lengthscales=lenscales,
                           variance=config.kernel_variance)
                const = tf.random.normal([1], dtype=floatx())

                K = kern(X, full_cov=True)
                K = tf.linalg.set_diag(
                    K,
                    tf.linalg.diag_part(K) + config.noise_variance)
                L = tf.linalg.cholesky(K)
                y = L @ tf.random.normal([L.shape[-1], 1],
                                         dtype=floatx()) + const

                model = GPR(kernel=kern,
                            noise_variance=config.noise_variance,
                            data=(X, y),
                            mean_function=mean_functions.Constant(c=const))

                mf, Sff = subroutine(config, model, Xnew)
                mg, Sgg = model.predict_f(Xnew, full_cov=True)

                tol = config.error_tol
                assert allclose(mf, mg, tol, tol)
                assert allclose(Sff, Sgg, tol, tol)
Exemple #5
0
def const_mean():
    return mean_functions.Constant(c=rng.randn(Data.D_out))
Exemple #6
0

def markov_gauss():
    cov_params = rng.randn(num_data + 1, D_in, 2 * D_in) / 2.0  # (N+1)xDx2D
    Xcov = cov_params @ np.transpose(cov_params, (0, 2, 1))  # (N+1)xDxD
    Xcross = cov_params[:-1] @ np.transpose(cov_params[1:], (0, 2, 1))  # NxDxD
    Xcross = np.concatenate((Xcross, np.zeros((1, D_in, D_in))),
                            0)  # (N+1)xDxD
    Xcov = np.stack([Xcov, Xcross])  # 2x(N+1)xDxD
    return MarkovGaussian(Xmu_markov, ctt(Xcov))


_means = {
    "lin": mf.Linear(A=rng.randn(D_in, D_out), b=rng.randn(D_out)),
    "identity": mf.Identity(input_dim=D_in),
    "const": mf.Constant(c=rng.randn(D_out)),
    "zero": mf.Zero(output_dim=D_out),
}

_distrs = {
    "gauss":
    Gaussian(Xmu, Xcov),
    "dirac_gauss":
    Gaussian(Xmu, np.zeros((num_data, D_in, D_in))),
    "gauss_diag":
    DiagonalGaussian(Xmu, rng.rand(num_data, D_in)),
    "dirac_diag":
    DiagonalGaussian(Xmu, np.zeros((num_data, D_in))),
    "dirac_markov_gauss":
    MarkovGaussian(Xmu_markov, np.zeros((2, num_data + 1, D_in, D_in))),
    "markov_gauss":
Exemple #7
0
def const():
    return mean_functions.Constant(rng.rand(Data.D_out))
Exemple #8
0
class Data:
    rng = np.random.RandomState(1)
    num_data = 5
    num_ind = 4
    D_in = 2
    D_out = 2

    Xmu = rng.randn(num_data, D_in)
    L = gen_L(rng, num_data, D_in, D_in)
    Xvar = np.array([l @ l.T for l in L])
    Z = rng.randn(num_ind, D_in)

    # distributions don't need to be compiled (No Parameter objects)
    # but the members should be Tensors created in the same graph
    graph = tf.Graph()
    with test_util.session_context(graph) as sess:
        gauss = Gaussian(tf.constant(Xmu), tf.constant(Xvar))
        dirac = Gaussian(tf.constant(Xmu),
                         tf.constant(np.zeros((num_data, D_in, D_in))))
        gauss_diag = DiagonalGaussian(tf.constant(Xmu),
                                      tf.constant(rng.rand(num_data, D_in)))
        dirac_diag = DiagonalGaussian(tf.constant(Xmu),
                                      tf.constant(np.zeros((num_data, D_in))))
        dirac_markov_gauss = MarkovGaussian(
            tf.constant(Xmu), tf.constant(np.zeros((2, num_data, D_in, D_in))))

        # create the covariance for the pairwise markov-gaussian
        dummy_gen = lambda rng, n, *shape: np.array(
            [rng.randn(*shape) for _ in range(n)])
        L_mg = dummy_gen(rng, num_data, D_in, 2 * D_in)  # N+1 x D x 2D
        LL = np.concatenate((L_mg[:-1], L_mg[1:]), 1)  # N x 2D x 2D
        Xcov = LL @ np.transpose(LL, (0, 2, 1))
        Xc = np.concatenate((Xcov[:, :D_in, :D_in], Xcov[-1:, D_in:, D_in:]),
                            0)  # N+1 x D x D
        Xcross = np.concatenate(
            (Xcov[:, :D_in, D_in:], np.zeros(
                (1, D_in, D_in))), 0)  # N+1 x D x D
        Xcc = np.stack([Xc, Xcross])  # 2 x N+1 x D x D

        markov_gauss = MarkovGaussian(Xmu, Xcc)

    with gpflow.decors.defer_build():
        # features
        ip = features.InducingPoints(Z)
        # kernels
        rbf_prod_seperate_dims = kernels.Product([
            kernels.RBF(1,
                        variance=rng.rand(),
                        lengthscales=rng.rand(),
                        active_dims=[0]),
            kernels.RBF(1,
                        variance=rng.rand(),
                        lengthscales=rng.rand(),
                        active_dims=[1])
        ])

        rbf_lin_sum = kernels.Sum([
            kernels.RBF(D_in, variance=rng.rand(), lengthscales=rng.rand()),
            kernels.RBF(D_in, variance=rng.rand(), lengthscales=rng.rand()),
            kernels.Linear(D_in, variance=rng.rand())
        ])

        rbf = kernels.RBF(D_in, variance=rng.rand(), lengthscales=rng.rand())

        lin_kern = kernels.Linear(D_in, variance=rng.rand())

        # mean functions
        lin = mean_functions.Linear(rng.rand(D_in, D_out), rng.rand(D_out))
        iden = mean_functions.Identity(
            D_in)  # Note: Identity can only be used if Din == Dout
        zero = mean_functions.Zero(output_dim=D_out)
        const = mean_functions.Constant(rng.rand(D_out))