Exemple #1
0
def check_star_convergence(QL_, QR_, MPL, MPR):

    PL_ = State(QL_, MPL)

    if MPR.EOS > -1:  # not a vacuum
        PR_ = State(QR_, MPR)

        ρ0 = min(MPL.ρ0, MPR.ρ0)
        b02 = min(MPL.b02, MPR.b02)

        cond = amax(abs(PL_.Σ()[0] - PR_.Σ()[0])) / (b02 * ρ0) < STAR_TOL
        cond &= abs(PL_.v[0] - PR_.v[0]) / sqrt(b02) < STAR_TOL
    else:
        ρ0 = MPL.ρ0
        b02 = MPL.b02

        cond = amax(abs(PL_.Σ()[0])) / (b02 * ρ0) < STAR_TOL

    if THERMAL:
        if MPR.EOS > -1:
            q0 = min(q_dims(MPL), q_dims(MPR))
            T0 = min(MPL.T0, MPR.T0)

            cond &= abs(PL_.q()[0] - PR_.q()[0]) / q0 < STAR_TOL
            cond &= abs(PL_.T() - PR_.T()) / T0 < STAR_TOL
        else:
            q0 = q_dims(MPL)

            cond &= abs(PL_.q()[0]) / q0 < STAR_TOL

    return cond
Exemple #2
0
def check_star_convergence(QL_, QR_, MPL, MPR, STAR_TOL=1e-6):

    PL_ = State(QL_, MPL)
    PR_ = State(QR_, MPR)

    cond1 = amax(abs(PL_.Σ()[0] - PR_.Σ()[0])) < STAR_TOL
    cond2 = abs(PL_.T() - PR_.T()) < STAR_TOL

    return cond1 and cond2
Exemple #3
0
def star_stepper_obj(x, QL, QR, dt, MPL, MPR):

    X = x.reshape([2, 21])
    ret = zeros([2, 21])

    QL_ = X[0, :17]
    QR_ = X[1, :17]

    PL = State(QL, MPL)
    PR = State(QR, MPR)
    PL_ = State(QL_, MPL)
    PR_ = State(QR_, MPR)

    pL = Cvec_to_Pvec(QL, MPL)
    pR = Cvec_to_Pvec(QR, MPR)
    pL_ = Cvec_to_Pvec(QL_, MPL)
    pR_ = Cvec_to_Pvec(QR_, MPR)

    ML = riemann_constraints2(PL, 'L', MPL)[:17, :17]
    MR = riemann_constraints2(PR, 'R', MPR)[:17, :17]

    xL_ = X[0, 17:]
    xR_ = X[1, 17:]

    xL = zeros(4)
    xR = zeros(4)

    xL[:3] = PL.Σ()[0]
    xR[:3] = PR.Σ()[0]
    xL[3] = PL.q()[0]
    xR[3] = PR.q()[0]

    ret[0, :4] = dot(ML[:4], pL_ - pL) - (xL_ - xL)
    ret[1, :4] = dot(MR[:4], pR_ - pR) - (xR_ - xR)

    SL = source_prim(QL, MPL)[:17]
    SR = source_prim(QR, MPR)[:17]
    SL_ = source_prim(QL_, MPL)[:17]
    SR_ = source_prim(QR_, MPR)[:17]

    ret[0, 4:17] = dot(ML[4:], (pL_ - pL) - dt / 2 * (SL + SL_))
    ret[1, 4:17] = dot(MR[4:], (pR_ - pR) - dt / 2 * (SR + SR_))

    bR = zeros(4)
    bL = zeros(4)
    bL[:3] = PL_.v
    bR[:3] = PR_.v
    bL[3] = PL_.T()
    bR[3] = PR_.T()

    ret[0, 17:] = xL_ - xR_
    ret[1, 17:] = bL - bR

    return ret.ravel()
Exemple #4
0
def check_star_convergence(QL_, QR_, MPL, MPR):

    PL_ = State(QL_, MPL)
    PR_ = State(QR_, MPR)

    cond1 = amax(abs(PL_.Σ()[0] - PR_.Σ()[0])) < STAR_TOL

    if THERMAL:
        cond2 = abs(PL_.T() - PR_.T()) < STAR_TOL
    else:
        cond2 = True

    return cond1 and cond2
Exemple #5
0
def star_stepper(QL_, QR_, MPL, MPR, interfaceType):
    """ Iterates to the next approximation of the star states.
        NOTE: the material on the right may be a vacuum.
    """
    PL = State(QL_, MPL)
    _, RL = riemann_constraints(PL, 1, MPL)

    if THERMAL:
        xL = concatenate([PL.Σ()[0], [PL.T()]])
    else:
        xL = PL.Σ()[0]

    cL = zeros(n6)

    if MPR.EOS > -1:  # not a vacuum

        PR = State(QR_, MPR)
        _, RR = riemann_constraints(PR, -1, MPR)

        if THERMAL:
            xR = concatenate([PR.Σ()[0], [PR.T()]])
        else:
            xR = PR.Σ()[0]

        cR = zeros(n6)

        if interfaceType == 'stick':
            x_ = stick_bcs(RL, RR, PL, PR, xL, xR)

        elif interfaceType == 'slip':
            x_ = slip_bcs(RL, RR, PL, PR, xL, xR)

        cL[:n1] = x_ - xL
        cR[:n1] = x_ - xR

        PRvec = Pvec(PR)
        PR_vec = dot(RR, cR) + PRvec
        QR_ = Pvec_to_Cvec(reorder(PR_vec), MPR)

    else:
        cL[:n1] = - xL
        if THERMAL:
            YL = RL[14, :4]
            cL[3] = (dot(YL[:3], PL.Σ()[0]) - PL.J[0]) / YL[3]
        QR_ = zeros(n6)

    PLvec = Pvec(PL)
    PL_vec = dot(RL, cL) + PLvec
    QL_ = Pvec_to_Cvec(reorder(PL_vec), MPL)

    return QL_, QR_
Exemple #6
0
def star_stepper(QL, QR, dt, MPL, MPR, SL=None, SR=None):

    d = 0

    PL = State(QL, MPL)
    PR = State(QR, MPR)
    LL, RL = riemann_constraints(PL, 1, MPL)
    LR, RR = riemann_constraints(PR, -1, MPR)
    YL = RL[11:15, :4]
    YR = RR[11:15, :4]

    xL = concatenate([PL.Σ()[d], [PL.T()]])
    xR = concatenate([PR.Σ()[d], [PR.T()]])

    Ξ1L = Xi1(PL, d, MPL)
    Ξ2L = Xi2(PL, d, MPL)
    OL = dot(Ξ1L, Ξ2L)
    Ξ1R = Xi1(PR, d, MPR)
    Ξ2R = Xi2(PR, d, MPR)
    OR = dot(Ξ1R, Ξ2R)

    _, QL_1 = eig(OL)
    _, QR_1 = eig(OR)

    if SL is not None:
        cL = dot(LL, reorder(SL, order='atypical'))
        cR = dot(LR, reorder(SR, order='atypical'))

        XL = dot(QL_1, cL[4:8])
        XR = dot(QR_1, cR[4:8])

        yL = concatenate([PL.v, [PL.J[d]]])
        yR = concatenate([PR.v, [PR.J[d]]])
        x_ = solve(YL - YR,
                   yR - yL - dt * (XL + XR) + dot(YL, xL) - dot(YR, xR))

    else:
        yL = concatenate([PL.v, [PL.J[d]]])
        yR = concatenate([PR.v, [PR.J[d]]])
        x_ = solve(YL - YR, yR - yL + dot(YL, xL) - dot(YR, xR))

    cL[:4] = x_ - xL
    cR[:4] = x_ - xR

    PLvec = reorder(Pvec(PL, MPL.THERMAL), order='atypical')
    PRvec = reorder(Pvec(PR, MPR.THERMAL), order='atypical')
    PL_vec = dot(RL, cL) + PLvec
    PR_vec = dot(RR, cR) + PRvec
    QL_ = Pvec_to_Cvec(reorder(PL_vec), MPL)
    QR_ = Pvec_to_Cvec(reorder(PR_vec), MPR)
    return QL_, QR_
Exemple #7
0
def F_cons(Q, d, MP):

    ret = zeros(NV)

    P = State(Q, MP)

    ρ = P.ρ
    p = P.p()
    E = P.E
    v = P.v

    vd = v[d]
    ρvd = ρ * vd

    ret[0] = ρvd

    ret[1] = ρvd * E + p * vd
    ret[2:5] = ρvd * v
    ret[2 + d] += p

    if VISCOUS:

        A = P.A
        σ = P.σ()

        σd = σ[d]
        ret[1] -= dot(σd, v)
        ret[2:5] -= σd

        Av = dot(A, v)
        ret[5 + d] = Av[0]
        ret[8 + d] = Av[1]
        ret[11 + d] = Av[2]

    if THERMAL:

        J = P.J
        T = P.T()
        q = P.q()

        ret[1] += q[d]
        ret[14:17] = ρvd * J
        ret[14 + d] += T

    if MULTI:
        λ = P.λ
        ret[17] = ρvd * λ

    return ret
Exemple #8
0
def M_prim(Q, d, MP):
    """ The system jacobian of the primitive system
        NOTE: Uses typical ordering
    """
    P = State(Q, MP)

    ρ = P.ρ
    p = P.p()
    A = P.A
    v = P.v

    c0 = c_0(ρ, p, A, MP)

    ret = v[d] * eye(NV)
    ret[0, 2 + d] = ρ
    ret[1, 2 + d] = ρ * c0**2
    ret[2 + d, 1] = 1 / ρ

    if VISCOUS:

        σ = P.σ()
        dσdρ = P.dσdρ()
        dσdA = P.dσdA()

        ret[1, 2:5] += σ[d] - ρ * dσdρ[d]
        ret[2:5, 0] = -1 / ρ * dσdρ[d]
        ret[2:5, 5:14] = -1 / ρ * dσdA[d].reshape([3, 9])

        ret[5 + d, 2:5] = A[0]
        ret[8 + d, 2:5] = A[1]
        ret[11 + d, 2:5] = A[2]

    if THERMAL:

        dTdρ = P.dTdρ()
        dTdp = P.dTdp()
        T = P.T()
        ch = c_h(ρ, T, MP)

        ret[1, 14 + d] = ρ * ch**2 / dTdp
        ret[14 + d, 0] = dTdρ / ρ
        ret[14 + d, 1] = dTdp / ρ

    return ret
Exemple #9
0
def star_stepper(QL, QR, MPL, MPR, NV=17):

    PL = State(QL, MPL)
    PR = State(QR, MPR)

    LhatL = riemann_constraints(QL, -1, MPL)
    LhatR = riemann_constraints(QR, 1, MPR)

    cL = zeros(NV)
    cR = zeros(NV)

    if STICK:

        YL = Y_matrix(PL, MPL, -1)
        YR = Y_matrix(PR, MPR, 1)

        if THERMAL:
            xL = concatenate([PL.Σ()[0], [PL.T()]])
            xR = concatenate([PR.Σ()[0], [PR.T()]])
            yL = concatenate([PL.v, PL.J[:1]])
            yR = concatenate([PR.v, PR.J[:1]])
        else:
            xL = PL.Σ()[0]
            xR = PR.Σ()[0]
            yL = PL.v
            yR = PR.v

        x_ = solve(YL - YR, yR - yL + dot(YL, xL) - dot(YR, xR))

    else:  # slip conditions - only implemented for non-thermal

        if THERMAL:
            YL = Y_matrix(PL, MPL, -1)[[0, 3]]
            YR = Y_matrix(PR, MPR, 1)[[0, 3]]

            xL = array([PL.Σ()[0], PL.T()])
            xR = array([PR.Σ()[0], PR.T()])
            yL = array([PL.v[0], PL.J[0]])
            yR = array([PR.v[0], PR.J[0]])

            M = YL[:, [0, -1]] - YR[:, [0, -1]]
            x_ = solve(M, yR - yL + dot(YL, xL) - dot(YR, xR))
            x_ = array([x_[0], 0, 0, x_[1]])

        else:
            YL = Y_matrix(PL, MPL, -1)[0]
            YR = Y_matrix(PR, MPR, 1)[0]

            xL = PL.Σ()[0]
            xR = PR.Σ()[0]
            yL = PL.v[0]
            yR = PR.v[0]

            x_ = (yR - yL + dot(YL, xL) - dot(YR, xR)) / (YL - YR)[0]
            x_ = array([x_, 0, 0])

    cL[:n1] = x_ - xL
    cR[:n1] = x_ - xR

    PLvec = Pvec(QL, MPL)
    PRvec = Pvec(QR, MPR)
    PL_vec = solve(LhatL, cL) + PLvec
    PR_vec = solve(LhatR, cR) + PRvec
    QL_ = Pvec_to_Cvec(PL_vec, MPL)
    QR_ = Pvec_to_Cvec(PR_vec, MPR)

    return QL_, QR_