Exemple #1
0
 def _get_grasp_policy(self):
     """
     Get the grasping policy based on the model
     Returns
     ----------
     grasping_policy: type `gqcnn.grasping.policy.policy.GraspingPolicy`
         Grasping policy to use.
     """
     # Get grasping policy
     if "FC" in self.model:
         if self.policy_config["type"] == "fully_conv_suction":
             self.grasping_policy = FullyConvolutionalGraspingPolicySuction(
                 self.policy_config)
         elif self.policy_config["type"] == "fully_conv_pj":
             self.grasping_policy = FullyConvolutionalGraspingPolicyParallelJaw(
                 self.policy_config)
         else:
             raise ValueError(
                 "Invalid fully-convolutional policy type: {}".format(
                     self.policy_config["type"]))
     else:
         policy_type = "cem"
         if "type" in self.policy_config:
             policy_type = self.policy_config["type"]
         if policy_type == "ranking":
             self.grasping_policy = RobustGraspingPolicy(self.policy_config)
         elif policy_type == "cem":
             self.grasping_policy = CrossEntropyRobustGraspingPolicy(
                 self.policy_config)
         else:
             raise ValueError("Invalid policy type: {}".format(policy_type))
Exemple #2
0
    if fully_conv:
        # TODO(vsatish): We should really be doing this in some factory policy.
        if policy_config["type"] == "fully_conv_suction":
            policy = FullyConvolutionalGraspingPolicySuction(policy_config)
        elif policy_config["type"] == "fully_conv_pj":
            policy = FullyConvolutionalGraspingPolicyParallelJaw(policy_config)
        else:
            raise ValueError(
                "Invalid fully-convolutional policy type: {}".format(
                    policy_config["type"]))
    else:
        policy_type = "cem"
        if "type" in policy_config:
            policy_type = policy_config["type"]
        if policy_type == "ranking":
            policy = RobustGraspingPolicy(policy_config)
        elif policy_type == "cem":
            policy = CrossEntropyRobustGraspingPolicy(policy_config)
        else:
            raise ValueError("Invalid policy type: {}".format(policy_type))

    # Query policy.
    policy_start = time.time()
    action = policy(state)
    logger.info("Planning took %.3f sec" % (time.time() - policy_start))

    # Vis final grasp.
    if policy_config["vis"]["final_grasp"]:
        vis.figure(size=(10, 10))
        vis.imshow(rgbd_im.depth,
                   vmin=policy_config["vis"]["vmin"],
Exemple #3
0
        if policy_cfg["type"] == "fully_conv_suction":
            grasping_policy = \
                FullyConvolutionalGraspingPolicySuction(policy_cfg)
        elif policy_cfg["type"] == "fully_conv_pj":
            grasping_policy = \
                FullyConvolutionalGraspingPolicyParallelJaw(policy_cfg)
        else:
            raise ValueError(
                "Invalid fully-convolutional policy type: {}".format(
                    policy_cfg["type"]))
    else:
        policy_type = "cem"
        if "type" in policy_cfg:
            policy_type = policy_cfg["type"]
        if policy_type == "ranking":
            grasping_policy = RobustGraspingPolicy(policy_cfg)
        elif policy_type == "cem":
            grasping_policy = CrossEntropyRobustGraspingPolicy(policy_cfg)
        else:
            raise ValueError("Invalid policy type: {}".format(policy_type))

    # Create a grasp planner.
    grasp_planner = GraspPlanner(cfg, cv_bridge, grasping_policy,
                                 grasp_pose_publisher)

    # Initialize the ROS service.
    grasp_planning_service = rospy.Service("grasp_planner", GQCNNGraspPlanner,
                                           grasp_planner.plan_grasp)
    grasp_planning_service_bb = rospy.Service("grasp_planner_bounding_box",
                                              GQCNNGraspPlannerBoundingBox,
                                              grasp_planner.plan_grasp_bb)
Exemple #4
0
    def configure(self, model_dir, fully_conv):
        """Configure model and grasping policy

        Args:
            model_config_file (str): path to model configuration file of type config.json
            fully_conv (bool): if fully-convolutional network
            grasp_offset (np.array): 3-dim array of values to adjust every pose in the eef ref frame

        """

        # read model config.json file
        try:
            model_config = json.load(open(os.path.join(model_dir, "config.json"), "r"))
        except Exception:
            raise ValueError(
                    "Cannot open model config file {}".format(os.path.join(model_dir, "config.json")))

        # --- set gripper mode --- #
        if "gripper_mode" in model_config["gqcnn"]:
            gripper_mode = model_config["gqcnn"]["gripper_mode"]

        else:
            input_data_mode = model_config["gqcnn_config"]["input_data_mode"]

            if input_data_mode == "tf_image":
                gripper_mode = GripperMode.LEGACY_PARALLEL_JAW

            elif input_data_mode == "parallel_jaw":
                gripper_mode = GripperMode.PARALLEL_JAW

            else:
                raise ValueError(
                    "Input data mode {} not supported!".format(input_data_mode))

        if (gripper_mode != GripperMode.LEGACY_PARALLEL_JAW and gripper_mode != GripperMode.PARALLEL_JAW):
            raise ValueError("Gripper mode {} not supported!".format(gripper_mode))

        # --- Load config --- #
        config_file = "cfg/fc_gqcnn_pj.yaml" if fully_conv else "cfg/gqcnn_pj.yaml"

        try:
            config_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), config_file)

        except Exception:
            print("cannot open configuration file {}".format(
                  os.path.join(os.path.dirname(os.path.realpath(__file__)), config_file)))

        # Read config
        self.cfg = YamlConfig(config_filename)

        # --- Define the grasping policy --- #
        policy_cfg = self.cfg["policy"]
        policy_cfg["metric"]["gqcnn_model"] = model_dir

        policy_type = "cem"
        if "type" in policy_cfg:
            policy_type = policy_cfg["type"]

        if policy_type == "fully_conv_pj":
            self.grasping_policy = FullyConvolutionalGraspingPolicyParallelJaw(policy_cfg)

        elif policy_type == "ranking":
            self.grasping_policy = RobustGraspingPolicy(policy_cfg)

        elif policy_type == "cem":
            self.grasping_policy = CrossEntropyRobustGraspingPolicy(policy_cfg)

        else:
            fc = "fully-convolutional" if fully_conv else ""
            raise ValueError("Invalid {} policy type: {}".format(fc, policy_type))

        # --- Set minimum input dimensions --- #
        if policy_type == "fully_conv_pj":
            self.min_width = self.cfg["policy"]["gqcnn_recep_w"]
            self.min_height = self.cfg["policy"]["gqcnn_recep_h"]

        else:
            pad = max(math.ceil(np.sqrt(2) * (float(self.cfg["policy"]["metric"]["crop_width"]) / 2)),
                      math.ceil(np.sqrt(2) * (float(self.cfg["policy"]["metric"]["crop_height"]) / 2)))

            self.min_width = 2 * pad + self.cfg["policy"]["metric"]["crop_width"]
            self.min_height = 2 * pad + self.cfg["policy"]["metric"]["crop_height"]
    def prepare_dexnet(self):
        # Get configs.
        model_config = json.load(
            open(os.path.join(self.model_path, "config.json"), "r"))
        # self.model_config = model_config
        # try:
        #     gqcnn_config = model_config["gqcnn"]
        #     gripper_mode = gqcnn_config["gripper_mode"]
        # except KeyError:
        #     gqcnn_config = model_config["gqcnn_config"]
        #     input_data_mode = gqcnn_config["input_data_mode"]
        #     if input_data_mode == "tf_image":
        #         gripper_mode = GripperMode.LEGACY_PARALLEL_JAW
        #     elif input_data_mode == "tf_image_suction":
        #         gripper_mode = GripperMode.LEGACY_SUCTION
        #     elif input_data_mode == "suction":
        #         gripper_mode = GripperMode.SUCTION
        #     elif input_data_mode == "multi_suction":
        #         gripper_mode = GripperMode.MULTI_SUCTION
        #     elif input_data_mode == "parallel_jaw":
        #         gripper_mode = GripperMode.PARALLEL_JAW
        #     else:
        #         raise ValueError(
        #             "Input data mode {} not supported!".format(input_data_mode))

        # Read config.
        config = YamlConfig(self.config_filename)
        self.inpaint_rescale_factor = config["inpaint_rescale_factor"]
        policy_config = config["policy"]
        self.policy_config = policy_config

        # Make relative paths absolute.
        if "gqcnn_model" in policy_config["metric"]:
            policy_config["metric"]["gqcnn_model"] = self.model_path
            if not os.path.isabs(policy_config["metric"]["gqcnn_model"]):
                policy_config["metric"]["gqcnn_model"] = os.path.join(
                    os.path.dirname(os.path.realpath(__file__)),
                    policy_config["metric"]["gqcnn_model"])

        # Setup sensor.
        self.camera_intr = CameraIntrinsics.load(self.camera_intr_filename)
        # Init policy.
        # Set input sizes for fully-convolutional policy.
        if self.fully_conv:
            policy_config["metric"]["fully_conv_gqcnn_config"][
                "im_height"] = self.height
            policy_config["metric"]["fully_conv_gqcnn_config"][
                "im_width"] = self.width

        if self.fully_conv:
            # TODO(vsatish): We should really be doing this in some factory policy.
            if policy_config["type"] == "fully_conv_suction":
                self.policy = FullyConvolutionalGraspingPolicySuction(
                    policy_config)
            elif policy_config["type"] == "fully_conv_pj":
                self.policy = FullyConvolutionalGraspingPolicyParallelJaw(
                    policy_config)
            else:
                raise ValueError(
                    "Invalid fully-convolutional policy type: {}".format(
                        policy_config["type"]))
        else:
            policy_type = "cem"
            if "type" in policy_config:
                policy_type = policy_config["type"]
            if policy_type == "ranking":
                self.policy = RobustGraspingPolicy(policy_config)
            elif policy_type == "cem":
                self.policy = CrossEntropyRobustGraspingPolicy(policy_config)
            else:
                raise ValueError("Invalid policy type: {}".format(policy_type))