def run(): xall, yall = np.loadtxt(gpr.get_com_file(0), skiprows=1, usecols=(0, 1), unpack=True) # 2*[Rscale] # calculate 2D radius on the skyplane R = np.sqrt(xall ** 2 + yall ** 2) # [Rscale] # set number and size of (linearly spaced) bins Rmin = 0.0 # [Rscale] Rmax = max(r) if gpr.rprior < 0 else 1.0 * gpr.rprior # [Rscale] print("Rmax [Rscale] = ", Rmax) R = R[(R < Rmax)] # determine radius once and for all # this must not be changed between readout and gravlite run # if you wish to change: set gp.getnewdata = True in gl_params.py if gp.lograd: print(gpr.nbins, " bins in log spacings") Binmin, Binmax, Rbin = bin_r_log(Rmax / gpr.nbins, Rmax, gpr.nbins) elif gp.consttr: print(len(R) / gpr.nbins, " particles per bin") Binmin, Binmax, Rbin = bin_r_const_tracers(R, len(R) / gpr.nbins) else: print(gpr.nbins, " bins in linear spacings") Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) # volume of a circular ring from binmin to binmax vol = np.zeros(gpr.nbins) for k in range(gpr.nbins): vol[k] = 4.0 * np.pi / 3.0 * (Binmax[k] ** 3 - Binmin[k] ** 3) # [Rscale^3] for comp in range(gpr.ncomp): print("####### working on component ", comp) print("input: ", gpr.get_com_file(comp) + "_3D") # start from data centered on COM already: if gfile.bufcount(gpr.get_com_file(comp) + "_3D") < 2: continue x, y, z, v = np.loadtxt( gpr.get_com_file(comp) + "_3D", skiprows=1, usecols=(0, 1, 2, 3), unpack=True ) # 3*[Rscale], [km/s] # calculate 2D radius on the skyplane r = np.sqrt(x ** 2 + y ** 2) # [Rscale] # set maximum radius (if gpr.rprior is set) rmax = max(r) if gpr.rprior < 0 else 1.0 * gpr.rprior # [Rscale] print("rmax [Rscale] = ", rmax) sel = r <= rmax x = x[sel] y = y[sel] z = z[sel] v = v[sel] r = r[sel] # [Rscale] totmass = 1.0 * len(x) # [munit], munit = 1/star rs = r # + possible starting offset, [Rscale] vlos = v # + possible starting offset, [km/s] print("output density: ") print(gpr.get_ntracer_file(comp) + "_3D") tr = open(gpr.get_ntracer_file(comp) + "_3D", "w") print(totmass, file=tr) tr.close() print(gpr.get_dens_file(comp) + "_3D") de = open(gpr.get_dens_file(comp) + "_3D", "w") print("rbin", "binmin", "binmax", "nu(r)/nu(0)", "error", file=de) print(gpr.get_enc_mass_file(comp) + "_3D") em = open(gpr.get_enc_mass_file(comp) + "_3D", "w") print("rbin", "binmin", "binmax", "M(<r)", "error", file=em) # gpr.n=30 iterations for getting random picked radius values density = np.zeros((gpr.nbins, gpr.n)) a = np.zeros((gpr.nbins, gpr.n)) # shared by density, siglos, kappa calcs for k in range(gpr.n): rsi = gpr.Rerror * np.random.randn(len(rs)) + rs # [Rscale] vlosi = gpr.vrerror * np.random.randn(len(vlos)) + vlos # [km/s] for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(rsi >= Binmin[i], rsi < Binmax[i])).flatten() # [1] density[i][k] = (1.0 * len(ind1)) / vol[i] * totmass # [munit/Rscale^2] vlos1 = vlosi[ind1] # [km/s] a[i][k] = 1.0 * len(ind1) # [1] # output density dens0 = np.sum(density[0]) / (1.0 * gpr.n) # [munit/Rscale^3] print("dens0 = ", dens0, " [munit/Rscale^3]") crscale = open(gpr.get_params_file(comp) + "_3D", "r") Rscale = np.loadtxt(crscale, comments="#", skiprows=1, unpack=False) crscale.close() cdens = open(gpr.get_params_file(comp) + "_3D", "a") print(dens0, file=cdens) # [munit/Rscale^3] print(dens0 / Rscale ** 3, file=cdens) # [munit/pc^3] print(totmass, file=cdens) # [munit] cdens.close() ab0 = np.sum(a[0]) / (1.0 * gpr.n) # [1] denserr0 = dens0 / np.sqrt(ab0) # [munit/Rscale^3] p_dens = np.zeros(gpr.nbins) p_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): dens = np.sum(density[b]) / (1.0 * gpr.n) # [munit/Rscale^3] ab = np.sum(a[b]) / (1.0 * gpr.n) # [1] denserr = dens / np.sqrt(ab) # [munit/Rscale^3] denserror = np.sqrt((denserr / dens0) ** 2 + (dens * denserr0 / (dens0 ** 2)) ** 2) # [1] if math.isnan(denserror): denserror = 0.0 # [1] p_dens[b] = p_dens[b - 1] # [1] p_edens[b] = p_edens[b - 1] # [1] else: p_dens[b] = dens / dens0 # [1] p_edens[b] = denserror # [1] #100/rbin would be artificial guess print(Rbin[b], Binmin[b], Binmax[b], p_dens[b], p_edens[b], file=de) # [Rscale], 2*[dens0] indr = r < Binmax[b] menclosed = 1.0 * np.sum(indr) / totmass # for normalization to 1 # [totmass] merror = menclosed / np.sqrt(ab) # artificial menclosed/10 # [totmass] print(Rbin[b], Binmin[b], Binmax[b], menclosed, merror, file=em) # [rscale], 2*[totmass] # TODO: check: take rbinmax for MCMC? de.close() em.close() if not gpr.showplots: continue # plot density ion() subplot(111) print("rbin = ", Rbin) print("p_dens = ", p_dens) print("p_edens = ", p_edens) plot(Rbin, p_dens, "b", lw=1) lbound = p_dens - p_edens lbound[lbound < 1e-6] = 1e-6 ubound = p_dens + p_edens fill_between(Rbin, lbound, ubound, alpha=0.5, color="r") yscale("log") xlim([0, gpr.rprior]) ylim([np.min(lbound), np.max(ubound)]) xlabel(r"$r [r_c]$") ylabel(r"$\nu(r)/\nu(0)$") savefig(gpr.get_dens_png(i) + "_3D.png") ioff() show() clf()
def run(): print('input: ',gpr.get_com_file(0)) # start from data centered on COM already: x,y,v = np.loadtxt(gpr.get_com_file(0),\ skiprows=1,usecols=(0,1,2),unpack=True) #[rscale], [rscale], [km/s] # calculate 2D radius on the skyplane r = np.sqrt(x**2+y**2) #[rscale] # set number and size of (linearly spaced) bins rmin = 0. #[rscale] rmax = max(r) if gpr.rprior<0 else 1.0*gpr.rprior #[rscale] print('rmax [rscale] = ', rmax) sel = (r<rmax) x = x[sel]; y = y[sel]; v = v[sel] #[rscale] totmass = 1.*len(x) #[munit], munit = 1/star if gp.lograd: # space logarithmically in radius binmin, binmax, rbin = bin_r_log(rmax/gpr.nbins, rmax, gpr.nbins) elif gp.consttr: binmin, binmax, rbin = bin_r_const_tracers(r, len(r)/gpr.nbins) else: binmin, binmax, rbin = bin_r_linear(rmin, rmax, gpr.nbins) #volume of a circular bin from binmin to binmax vol = np.zeros(gpr.nbins) for k in range(gpr.nbins): vol[k] = np.pi*(binmax[k]**2-binmin[k]**2) # [rscale**2] # rs = gpr.rerror*np.random.randn(len(r))+r rs = r #[rscale] # if no initial offset is whished print('output: ') print(gpr.get_ntracer_file(0)) tr = open(gpr.get_ntracer_file(0),'w') print(totmass, file=tr) tr.close() print(gpr.get_dens_file(0)) de = open(gpr.get_dens_file(0),'w') print(gpr.get_enc_mass_file(0)) em = open(gpr.get_enc_mass_file(0),'w') print('r','nu(r)/nu(0)','error', file=de) print('r','M(<r)','error', file=em) # 30 iterations for getting random picked radius values density = np.zeros((gpr.nbins,gpr.n)) a = np.zeros((gpr.nbins,gpr.n)) for k in range(gpr.n): rsi = gpr.rerror * np.random.randn(len(rs)) + rs # [rscale] for j in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(rsi>=binmin[j],rsi<binmax[j])).flatten() # [1] density[j][k] = (1.*len(ind1))/vol[j]*totmass # [munit/rscale**2] a[j][k] = 1.*len(ind1) #[1] dens0 = np.sum(density[0])/(1.*gpr.n) # [munit/rscale**2] print('dens0 = ',dens0,'[munit/rscale**2]') crscale = open(gpr.get_params_file(0),'r') rscale = np.loadtxt(crscale, comments='#', skiprows=1, unpack=False) crscale.close() cdens = open(gpr.get_params_file(0),'a') print(dens0, file=cdens) # [munit/rscale**2] print(dens0/rscale**2, file=cdens) # [munit/pc**2] print(totmass, file=cdens) # [munit] cdens.close() ab0 = np.sum(a[0])/(1.*gpr.n) # [1] denserr0 = dens0/np.sqrt(ab0) # [munit/rscale**2] p_dens = np.zeros(gpr.nbins); p_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): dens = np.sum(density[b])/(1.*gpr.n) # [munit/rscale**2] ab = np.sum(a[b])/(1.*gpr.n) # [1] denserr = dens/np.sqrt(ab) # [munit/rscale**2] denserror = np.sqrt((denserr/dens0)**2+(dens*denserr0/(dens0**2))**2) #[1] if(math.isnan(denserror)): denserror = 0. # [1] ## [PS]: TODO: change bin sizes to include same number of ## stars in each bin, not assigning wrong density as below p_dens[b] = p_dens[b-1] # [1] p_edens[b]= p_edens[b-1] # [1] else: p_dens[b] = dens/dens0 # [1] p_edens[b]= denserror # [1] #100/rbin would be artificial guess for b in range(gpr.nbins): print(rbin[b],p_dens[b],p_edens[b], file=de) # [rscale], [dens0], [dens0] indr = (r<binmax[b]) menclosed = 1.0*np.sum(indr)/totmass # /totmass for normalization to 1 at last bin #[totmass] merror = menclosed/np.sqrt(ab) # artificial menclosed/10 gives good approximation #[totmass] print(rbin[b],menclosed,merror, file=em) # [rscale], [totmass], [totmass] # TODO: check: take rbinmax for MCMC? de.close() em.close() if not gpr.showplots: return ion(); subplot(111) print('rbin = ',rbin) print('p_dens = ',p_dens) print('p_edens = ',p_edens) plot(rbin,p_dens,'b',linewidth=3) lbound = p_dens-p_edens; lbound[lbound<1e-6] = 1e-6 ubound = p_dens+p_edens; fill_between(rbin,lbound,ubound,alpha=0.5,color='r') # xscale('log'); yscale('log') xlim([np.min(rbin),np.max(rbin)]) ylim([np.min(lbound),np.max(ubound)]) # ylim([1e-3,3.])#ylim([1e-6,2*np.max(p_dens)]) # ylim([0,1]) xlabel(r'$r [r_c]$') ylabel(r'$\nu(r)/\nu(0)$') # plt.legend(['\rho','\rho'],'lower left') # title(fil) # axes().set_aspect('equal') savefig(gpr.get_dens_png(0)) if gpr.showplots: ioff(); show(); clf()
def run(): xall,yall = np.loadtxt(gpr.get_com_file(0), skiprows=1, usecols=(0,1), unpack=True) # 2*[Rscale] # calculate 2D radius on the skyplane R = np.sqrt(xall**2+yall**2) # [Rscale] # set number and size of (linearly spaced) bins Rmin = 0. #[rscale] Rmax = max(R) if gpr.rprior<0 else 1.0*gpr.rprior # [Rscale] print('Rmax [Rscale] = ', Rmax) R = R[(R<Rmax)] # determine radius once and for all # this must not be changed between readout and gravlite run # if you wish to change: set gp.getnewdata = True in gl_params.py if gp.lograd: print(gpr.nbins,' bins in log spacings') Binmin, Binmax, Rbin = bin_r_log(Rmax/gpr.nbins, Rmax, gpr.nbins) elif gp.consttr: print(len(R)/gpr.nbins,' particles per bin') Binmin, Binmax, Rbin = bin_r_const_tracers(R, len(R)/gpr.nbins) else: print(gpr.nbins, ' bins in linear spacings') Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) # volume of a circular ring from binmin to binmax Vol = np.zeros(gpr.nbins) for k in range(gpr.nbins): Vol[k] = np.pi*(Binmax[k]**2-Binmin[k]**2) # [Rscale^2] for comp in range(gpr.ncomp): print('####### working on component ',comp) print('input: ',gpr.get_com_file(comp)) # start from data centered on COM already: if gfile.bufcount(gpr.get_com_file(comp))<2: continue x,y,v = np.loadtxt(gpr.get_com_file(comp),\ skiprows=1,usecols=(0,1,2),unpack=True) #[rscale], [rscale], [km/s] # calculate 2D radius on the skyplane R = np.sqrt(x**2+y**2) #[rscale] # set maximum radius (if gpr.rprior is set) Rmax = max(R) if gpr.rprior<0 else 1.0*gpr.rprior # [Rscale] print('Rmax [Rscale] = ', Rmax) sel = (R<=Rmax) x = x[sel]; y = y[sel]; v = v[sel]; R = R[sel] # [Rscale] totmass = 1.*len(x) # [munit], munit = 1/star Rs = R # + possible starting offset, [Rscale] vlos = v # + possible starting offset, [km/s] print('output density: ') print(gpr.get_ntracer_file(comp)) tr = open(gpr.get_ntracer_file(comp),'w') print(totmass, file=tr) tr.close() print(gpr.get_dens_file(comp)) de = open(gpr.get_dens_file(comp),'w') print('Rbin [Rscale]','Binmin [Rscale]','Binmax [Rscale]','Nu(R)/Nu(0) [1]','error [1]', file=de) print(gpr.get_enc_mass_file(comp)) em = open(gpr.get_enc_mass_file(comp),'w') print('R [Rscale]','Binmin [Rscale]','Binmax [Rscale]','M(<Binmax) [Msun]','error [Msun]', file=em) print('output siglos: ',gpr.get_siglos_file(comp)) sigfil = open(gpr.get_siglos_file(comp),'w') print('R [Rscale]','Binmin [Rscale]','Binmax [Rscale]','sigma_r(R) [km/s]','error [km/s]', file=sigfil) print('output kurtosis: ',gpr.get_kurtosis_file(comp)) kappafil = open(gpr.get_kurtosis_file(comp),'w') print('R [Rscale]','Binmin [Rscale]','Binmax [Rscale]','kappa_los(R) [1]','error [1]', file=kappafil) # gpr.n=30 iterations for getting random picked radius values Density = np.zeros((gpr.nbins,gpr.n)) dispvelocity = np.zeros((gpr.nbins,gpr.n)) mom4 = np.zeros((gpr.nbins,gpr.n)) a = np.zeros((gpr.nbins,gpr.n)) # shared by density, siglos, kappa calcs for k in range(gpr.n): Rsi = gpr.Rerror * np.random.randn(len(Rs)) + Rs # [Rscale] vlosi = gpr.vrerror * np.random.randn(len(vlos)) + vlos # [km/s] for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(Rsi >= Binmin[i],Rsi<Binmax[i])).flatten() # [1] Density[i][k] = (1.*len(ind1))/Vol[i]*totmass # [munit/rscale**2] vlos1 = vlosi[ind1] # [km/s] if(len(ind1)<=1): dispvelocity[i][k] = dispvelocity[i-1][k] mom4[i][k] = mom4[i-1][k] # attention! should be 0, uses last value else: dispvelocity[i][k] = meanbiweight(vlos1,ci_perc=68.4,ci_mean=True,ci_std=True)[1] # [km/s], see BiWeight.py mom4[i][k] = kurtosis(vlos1, axis=0, fisher=False, bias=False) # [1] a[i][k] = 1.*len(ind1) #[1] # output density Dens0 = np.sum(Density[0])/(1.*gpr.n) # [munit/Rscale^2] print('Dens0 = ', Dens0, '[munit/Rscale^2]') crscale = open(gpr.get_params_file(comp),'r') Rscale = np.loadtxt(crscale, comments='#', skiprows=1, unpack=False) crscale.close() cdens = open(gpr.get_params_file(comp),'a') print(Dens0, file=cdens) # [munit/Rscale^2] Dens0pc = Dens0/Rscale**2 # [munis/pc^2] print(Dens0pc, file=cdens) # [munit/pc^2] print(totmass, file=cdens) # [munit] cdens.close() ab0 = np.sum(a[0])/(1.*gpr.n) # [1] Denserr0 = Dens0/np.sqrt(ab0) # [munit/Rscale^2] P_dens = np.zeros(gpr.nbins); P_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): Dens = np.sum(Density[b])/(1.*gpr.n) # [munit/Rscale^2] ab = np.sum(a[b])/(1.*gpr.n) # [1] Denserr = Dens/np.sqrt(ab) # [munit/Rscale^2] # TODO: too small? offset in nu? Denserror = np.sqrt((Denserr/Dens0)**2+(Dens*Denserr0/(Dens0**2))**2) # [1] if(math.isnan(Denserror)): Denserror = 0. # [1] P_dens[b] = P_dens[b-1] # [1] P_edens[b]= P_edens[b-1] # [1] else: P_dens[b] = Dens/Dens0 # [1] P_edens[b]= Denserror # [1] #100/rbin would be artificial guess print(Rbin[b], Binmin[b], Binmax[b], P_dens[b], P_edens[b], file=de) # 3*[rscale], [dens0], [dens0] indr = (R<Binmax[b]) Menclosed = 1.0*np.sum(indr)/totmass # for normalization to 1 #[totmass] Merror = Menclosed/np.sqrt(ab) # or artificial Menclosed/10 #[totmass] print(Rbin[b], Binmin[b], Binmax[b], Menclosed, Merror, file=em) # [Rscale], 2* [totmass] # TODO: check: take rbinmax for MCMC? de.close() em.close() # output siglos p_dvlos = np.zeros(gpr.nbins); p_edvlos = np.zeros(gpr.nbins) for b in range(gpr.nbins): dispvel = np.sum(dispvelocity[b])/gpr.n #[km/s] ab = np.sum(a[b])/(1.*gpr.n) #[1] if ab == 0: dispvelerror = p_edvlos[b-1] #[km/s] # attention! uses last error else: dispvelerror = dispvel/np.sqrt(ab) #[km/s] p_dvlos[b] = dispvel #[km/s] p_edvlos[b]= dispvelerror #[km/s] maxvlos = max(p_dvlos) #[km/s] print('maxvlos = ', maxvlos, '[km/s]') fpars = open(gpr.get_params_file(comp),'a') print(maxvlos, file=fpars) #[km/s] fpars.close() for b in range(gpr.nbins): print(Rbin[b], Binmin[b], Binmax[b], np.abs(p_dvlos[b]/maxvlos),np.abs(p_edvlos[b]/maxvlos), file=sigfil) # 3*[rscale], 2*[maxvlos] # TODO: check uncommented /np.sqrt(n)) sigfil.close() # output kurtosis kappa p_kappa = np.zeros(gpr.nbins) # needed for plotting later p_ekappa = np.zeros(gpr.nbins) for b in range(gpr.nbins): kappavel = np.sum(mom4[b])/gpr.n #[1] ab = np.sum(a[b])/(1.*gpr.n) #[1] if ab == 0: kappavelerror = p_edvlos[b-1] #[1] # attention! uses last error else: kappavelerror = np.abs(kappavel/np.sqrt(ab)) #[1] p_kappa[b] = kappavel p_ekappa[b] = kappavelerror print(Rbin[b],Binmin[b],Binmax[b], kappavel, kappavelerror, file=kappafil) # [rscale], 2*[1] # TODO: /np.sqrt(n)) kappafil.close() if not gpr.showplots: continue # plot density ion(); subplot(111) print('Rbin = ', Rbin) print('P_dens = ', P_dens) print('P_edens = ', P_edens) plot(Rbin, P_dens*Dens0pc, 'b', lw=1) lbound = (P_dens-P_edens)*Dens0pc; lbound[lbound<1e-6] = 1e-6 ubound = (P_dens+P_edens)*Dens0pc fill_between(Rbin, lbound, ubound, alpha=0.5, color='r') yscale('log') # xlim([0, gpr.rprior]) # ylim([np.min(lbound),np.max(ubound)]) xlabel(r'$R [R_c]$') ylabel(r'$\nu_{2D}(R) [\mathrm{Msun/pc/pc}]$') savefig(gpr.get_dens_png(i)) ioff(); show(); clf() # plot siglos ion(); subplot(111) print('Rbin = ',Rbin,' Rscale') print('p_dvlos = ',p_dvlos,' km/s') print('p_edvlos = ',p_edvlos, 'km/s') plot(Rbin, p_dvlos, 'b', lw=1) fill_between(Rbin, p_dvlos-p_edvlos, p_dvlos+p_edvlos, alpha=0.5, color='r') # [rscale],2*[km/s] xlabel(r'$R [\mathrm{Rscale}]$') ylabel(r'$\langle\sigma_{\mathrm{LOS}}\rangle [\mathrm{km/s}]$') ylim([-1, 30]) # xlim([0, 3]) savefig(gpr.get_siglos_png(comp)) ioff(); show(); clf() # plot kappa ion(); subplot(111) print('Rbin = ', Rbin, ' Rscale') print('p_kappa = ', p_kappa) print('p_ekappa = ', p_ekappa) plot(Rbin, p_kappa, 'b', lw=1) fill_between(Rbin, p_kappa-p_ekappa, p_kappa+p_ekappa, alpha=0.5, color='r') # [rscale], 2*[1] xlabel(r'$R [\mathrm{Rscale}]$') ylabel(r'$\langle\kappa_{\mathrm{LOS}}\rangle [1]$') ylim([0, 5.]) # xlim([0, gpr.rprior]) savefig(gpr.get_kurtosis_png(comp)) ioff(); show(); clf()
def run(): Rscale = []; Dens0Rscale = []; Dens0pc = []; Totmass = []; Maxvlos = [] rscale = []; dens0Rscale = []; dens0pc = []; totmass = []; maxvlos = [] for comp in range(3): A = np.loadtxt(gp.files.get_scale_file(comp), unpack=False, skiprows=1) Rscale.append(A[0]) Dens0Rscale.append(A[1]) Dens0pc.append(A[2]) Totmass.append(A[3]) B = np.loadtxt(gp.files.get_scale_file(comp)+'_3D', unpack=False, skiprows=1) rscale.append(B[0]) dens0Rscale.append(B[1]) dens0pc.append(B[2]) totmass.append(B[3]) print('####### working on component ',comp) print('input: ',gpr.get_com_file(comp)+'_3D') # start from data centered on COM already: if gfile.bufcount(gpr.get_com_file(comp)+'_3D')<2: continue Rbin,Binmin,Binmax,Dens,Denserr = np.loadtxt(gpr.get_dens_file(comp),\ skiprows=1,usecols=(0,1,2,3,4),\ unpack=True) # 3*[Rscale], [km/s] Rbin*=Rscale[comp]; Binmin*=Rscale[comp]; Binmax*=Rscale[comp]; Dens*=Dens0pc[comp]; Denserr*=Dens0pc[comp] rbin,binmin,binmax,dens,denserr = np.loadtxt(gpr.get_dens_file(comp)+'_3D',\ skiprows=1,usecols=(0,1,2,3,4),\ unpack=True) # 3*[Rscale], [km/s] rbin*=rscale[comp]; binmin*=rscale[comp]; binmax*=rscale[comp]; dens*=dens0pc[comp]; denserr*=dens0pc[comp] ion() f=figure(figsize=(6,3)) ax1 = f.add_subplot(121) # Nu ax2 = f.add_subplot(122, sharex=ax1) # nu ax1.plot(Rbin, Dens,'b',lw=1) lbound = Dens-Denserr; lbound[lbound<1e-6] = 1e-6 ubound = Dens+Denserr; ax1.fill_between(Rbin,lbound,ubound,alpha=0.5,color='r') ax1.set_yscale('log') ax1.set_xlim([0,np.max(Binmax)]) ax1.set_ylim([np.min(lbound),np.max(ubound)]) ax1.set_xlabel(r'$R [R_c]$') ax1.set_ylabel(r'$\nu_{2D}(R)/\nu_{2D}(0)$') try: ax1.plot(Rbin,rho_INT_Rho(Rbin,dens,denserr)) ax1.plot(Rbin,rho_INT_Rho(Rbin,Rho_INT_rho(Rbin,Dens,Denserr),denserr)) except Exception as detail: print('rho_INT_Rho giving NaN in plotting') draw() ax2.plot(rbin, dens,'b',lw=1) lbound = dens-denserr; lbound[lbound<1e-6] = 1e-6 ubound = dens+denserr; ax2.fill_between(rbin,lbound,ubound,alpha=0.5,color='r') ax2.set_yscale('log') ax2.set_xlim([0,np.max(binmax)]) ax2.set_ylim([np.min(lbound),np.max(ubound)]) ax2.set_xlabel(r'$r [R_c]$') ax2.set_ylabel(r'$\nu(r)/\nu(0)$') ax2.yaxis.tick_right() ax2.yaxis.set_label_position("right") draw() # projNu = rho_INT_Rho(rbin, dens) # TODO: do not forget try # projNu = test(rbin, binmin, binmax, dens) # ax1.plot(rbin, projNu) ax2.plot(rbin,Rho_INT_rho(Rbin,Dens,Denserr),color='green') draw() pdb.set_trace() ioff(); show()
def run(): for comp in range(gpr.ncomp): print('input:',gpr.fileposspherical[comp]) R, Phi, vlos = np.loadtxt(gpr.fileposspherical[comp],\ comments='#', unpack=True) Totmass = 1.*len(R) # [munit], munit = 1/star # Rs=gpr.Rerror*np.random.randn(len(r))+r # Rs not changed later on, ever: misplacement, for all realizations. wanted? # yes, we scatter radii in foo_pool Rs = R; Rmin = min(Rs); Rmax = max(Rs) if gp.lograd: print(gpr.nbins,' bins in log spacings') Binmin, Binmax, Rbin = bin_r_log(Rmax/gpr.nbins, Rmax, gpr.nbins) elif gp.consttr: Binmin, Binmax, Rbin = bin_r_const_tracers(Rs, len(Rs)/gpr.nbins) print(len(R)/gpr.nbins,' particles per bin') else: print(gpr.nbins, ' bins in linear spacings') Binmin, Binmax, Rbin = bin_r_linear(Rmin, Rmax, gpr.nbins) # volume of a bin with height binlength, 2D Vol = np.zeros(gpr.bins) for i in range(gpr.bins): Vol[i] = np.pi*(Binmax[i]**2-Binmin[i]**2) # gpr.n=30 iterations for getting random picked radius values Density = np.zeros((gpr.nbins,gpr.n)) A = np.zeros((gpr.nbins,gpr.n)) # shared by density, siglos, kappa calcs for k in range(gpr.n): Rsi = gpr.Rerror * np.random.randn(len(Rs)) + Rs # [Rscale] vlosi = gpr.vrerror * np.random.randn(len(vlos)) + vlos for i in range(gpr.nbins): ind1 = np.argwhere(np.logical_and(Rsi>=Binmin[i], Rsi<Binmax[i])).flatten() # [1] Density[i][k] = (1.*len(ind1))/Vol[i]*Totmass # [munit/Rscale^2] vlos1 = vlosi[ind1] # [km/s] A[i][k] = 1.*len(ind1) # [1] # output density Dens0 = np.sum(Density[0])/(1.*gpr.n) # [munit/Rscale^3] print('Dens0 = ',Dens0,' [munit/Rscale^2]') crscale = open(gpr.get_params_file(comp),'r') Rscale = np.loadtxt(cscale, comments='#', unpack=False) crscale.close() cdens = open(gpr.get_params_file(comp),'a') print(Dens0,file=cdens) # [munit/Rscale^2] print(Dens0/Rscale**2,file=cdens) # [munit/pc^2] print(Totmass,file=cdens) # [munit] cdens.close() print(gpr.get_dens_file(comp)) de = open(gpr.get_dens_file(comp),'w') print('# Rbin [Rscale]','Binmin [Rscale]','Binmax [Rscale]', 'Nu(R)/Nu(0) [1]','error [1]', file=de) print(gpr.get_enc_mass_file(comp)) em = open(gpr.get_enc_mass_file(comp),'w') print('# R [Rscale]','Binmin [Rscale]','Binmax [Rscale]',\ 'M(<Binmax) [Msun]','error [Msun]', file=em) AB0 = np.sum(A[0])/(1.*gpr.n) # [1] Denserr0 = Dens0/np.sqrt(AB0) # [munit/Rscale^3] P_dens = np.zeros(gpr.nbins); P_edens = np.zeros(gpr.nbins) for b in range(gpr.nbins): Dens = np.sum(Density[b])/(1.*gpr.n) # [munit/Rscale^3] AB = np.sum(A[b])/(1.*gpr.n) # [1] Denserr = Dens/np.sqrt(AB) # [munit/Rscale^3] Denserror = np.sqrt((Denserr/Dens0)**2+(Dens*Denserr0/(Dens0**2))**2) #[1] if(math.isnan(Denserror)): Denserror = 0. # [1] P_dens[b] = P_dens[b-1] # [1] P_edens[b]= P_edens[b-1] # [1] else: P_dens[b] = Dens/Dens0 # [1] P_edens[b]= Denserror # [1] #100/rbin would be artificial guess print(Rbin[b], Binmin[b], Binmax[b], P_dens[b], P_edens[b], file=de) # [Rscale], 2*[dens0] # normalization to 1: indr = (R<Binmax[b]) menclosed = 1.0*np.sum(indr)/Totmass # [Totmass] merror = menclosed/np.sqrt(AB) # artificial menclosed/10 # [Totmass] print(Rbin[b], Binmin[b], Binmax[b], menclosed, merror, file=em) # [rscale], 2*[Totmass] # TODO: check: take rbinmax for MCMC? de.close() em.close() if not gpr.showplots: continue # plot density ion(); subplot(111) print('Rbin = ',Rbin) print('P_dens = ',P_dens) print('P_edens = ',P_edens) plot(Rbin,P_dens,'b',lw=1) lbound = P_dens-P_edens; lbound[lbound<1e-6] = 1e-6 ubound = P_dens+P_edens; fill_between(Rbin, lbound, ubound, alpha=0.5, color='r') yscale('log') # xlim([0,3.]) # ylim([np.min(lbound),np.max(ubound)]) xlabel(r'$R [R_c]$') ylabel(r'$\nu_{2D}(R)/\nu_{2D}(0)$') savefig(gpr.get_dens_png(i)) if gpr.showplots: ioff(); show(); clf() return