def eval(self): self.coarse_net.eval() self.refine_net.eval() ds_name = self.cfg.dataset_dir.split('/')[-1] total_error_cnet = {} total_error_rnet = {} for split, ds in [('val', self.ds_val), ('test', self.ds_test), ('train', self.ds_train)]: mean_error_cnet = [] mean_error_rnet = [] with torch.no_grad(): for dorig in ds: dorig = {k: dorig[k].to(self.device) for k in dorig.keys()} MESH_SCALER = 1000 drec_cnet = self.coarse_net(**dorig) verts_hand_cnet = self.rhm_train(**drec_cnet).vertices mean_error_cnet.append( torch.mean( torch.abs(dorig['verts_rhand'] - verts_hand_cnet) * MESH_SCALER)) ########## refine net params_rnet = self.params_rnet(dorig) dorig.update(params_rnet) drec_rnet = self.refine_net(**dorig) verts_hand_mano = self.rhm_train(**drec_rnet).vertices mean_error_rnet.append( torch.mean( torch.abs(dorig['verts_rhand'] - verts_hand_mano) * MESH_SCALER)) total_error_cnet[split] = { 'v2v_mae': float(to_cpu(torch.stack(mean_error_cnet).mean())) } total_error_rnet[split] = { 'v2v_mae': float(to_cpu(torch.stack(mean_error_rnet).mean())) } outpath = makepath(os.path.join( self.cfg.work_dir, 'evaluations', 'ds_%s' % ds_name, os.path.basename(self.cfg.best_cnet).replace( '.pt', '_CoarseNet.json')), isfile=True) with open(outpath, 'w') as f: json.dump(total_error_cnet, f) with open(outpath.replace('.json', '_RefineNet.json'), 'w') as f: json.dump(total_error_rnet, f) return total_error_cnet, total_error_rnet
def vis_results(dorig, coarse_net, refine_net, rh_model , save=False, save_dir = None): with torch.no_grad(): imw, imh = 1920, 780 cols = len(dorig['bps_object']) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') mvs = MeshViewers(window_width=imw, window_height=imh, shape=[1, cols], keepalive=True) drec_cnet = coarse_net.sample_poses(dorig['bps_object']) verts_rh_gen_cnet = rh_model(**drec_cnet).vertices _, h2o, _ = point2point_signed(verts_rh_gen_cnet, dorig['verts_object'].to(device)) drec_cnet['trans_rhand_f'] = drec_cnet['transl'] drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat(drec_cnet['global_orient']).view(-1, 3, 3) drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat(drec_cnet['hand_pose']).view(-1, 15, 3, 3) drec_cnet['verts_object'] = dorig['verts_object'].to(device) drec_cnet['h2o_dist']= h2o.abs() drec_rnet = refine_net(**drec_cnet) verts_rh_gen_rnet = rh_model(**drec_rnet).vertices for cId in range(0, len(dorig['bps_object'])): try: from copy import deepcopy meshes = deepcopy(dorig['mesh_object']) obj_mesh = meshes[cId] except: obj_mesh = points_to_spheres(to_cpu(dorig['verts_object'][cId]), radius=0.002, vc=name_to_rgb['green']) hand_mesh_gen_cnet = Mesh(v=to_cpu(verts_rh_gen_cnet[cId]), f=rh_model.faces, vc=name_to_rgb['pink']) hand_mesh_gen_rnet = Mesh(v=to_cpu(verts_rh_gen_rnet[cId]), f=rh_model.faces, vc=name_to_rgb['gray']) if 'rotmat' in dorig: rotmat = dorig['rotmat'][cId].T obj_mesh = obj_mesh.rotate_vertices(rotmat) hand_mesh_gen_cnet.rotate_vertices(rotmat) hand_mesh_gen_rnet.rotate_vertices(rotmat) hand_mesh_gen_cnet.reset_face_normals() hand_mesh_gen_rnet.reset_face_normals() # mvs[0][cId].set_static_meshes([hand_mesh_gen_cnet] + obj_mesh, blocking=True) mvs[0][cId].set_static_meshes([hand_mesh_gen_rnet,obj_mesh], blocking=True) if save: save_path = os.path.join(save_dir, str(cId)) makepath(save_path) hand_mesh_gen_rnet.write_ply(filename=save_path + '/rh_mesh_gen_%d.ply' % cId) obj_mesh[0].write_ply(filename=save_path + '/obj_mesh_%d.ply' % cId)
def get_meshes(dorig, coarse_net, refine_net, rh_model, save=False, save_dir=None): with torch.no_grad(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') drec_cnet = coarse_net.sample_poses(dorig['bps_object']) verts_rh_gen_cnet = rh_model(**drec_cnet).vertices _, h2o, _ = point2point_signed(verts_rh_gen_cnet, dorig['verts_object'].to(device)) drec_cnet['trans_rhand_f'] = drec_cnet['transl'] drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat(drec_cnet['global_orient']).view(-1, 3, 3) drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat(drec_cnet['hand_pose']).view(-1, 15, 3, 3) drec_cnet['verts_object'] = dorig['verts_object'].to(device) drec_cnet['h2o_dist'] = h2o.abs() drec_rnet = refine_net(**drec_cnet) verts_rh_gen_rnet = rh_model(**drec_rnet).vertices gen_meshes = [] for cId in range(0, len(dorig['bps_object'])): try: obj_mesh = dorig['mesh_object'][cId] except: obj_mesh = points2sphere(points=to_cpu(dorig['verts_object'][cId]), radius=0.002, vc=name_to_rgb['yellow']) hand_mesh_gen_rnet = Mesh(vertices=to_cpu(verts_rh_gen_rnet[cId]), faces=rh_model.faces, vc=[245, 191, 177]) if 'rotmat' in dorig: rotmat = dorig['rotmat'][cId].T obj_mesh = obj_mesh.rotate_vertices(rotmat) hand_mesh_gen_rnet.rotate_vertices(rotmat) gen_meshes.append([obj_mesh, hand_mesh_gen_rnet]) if save: save_path = os.path.join(save_dir, str(cId)) makepath(save_path) hand_mesh_gen_rnet.export(filename=save_path + '/rh_mesh_gen_%d.ply' % cId) obj_mesh.export(filename=save_path + '/obj_mesh_%d.ply' % cId) return gen_meshes
def vis_results(ho, dorig, coarse_net, refine_net, rh_model, save=False, save_dir=None, rh_model_pkl=None, vis=True): # with torch.no_grad(): imw, imh = 1920, 780 cols = len(dorig['bps_object']) # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device('cpu') if vis: mvs = MeshViewers(window_width=imw, window_height=imh, shape=[1, cols], keepalive=True) # drec_cnet = coarse_net.sample_poses(dorig['bps_object']) # # for k in drec_cnet.keys(): # print('drec cnet', k, drec_cnet[k].shape) # verts_rh_gen_cnet = rh_model(**drec_cnet).vertices drec_cnet = {} hand_pose_in = torch.Tensor(ho.hand_pose[3:]).unsqueeze(0) mano_out_1 = rh_model_pkl(hand_pose=hand_pose_in) hand_pose_in = mano_out_1.hand_pose mTc = torch.Tensor(ho.hand_mTc) approx_global_orient = rotmat2aa(mTc[:3, :3].unsqueeze(0)) if torch.isnan(approx_global_orient).any(): # Using honnotate? approx_global_orient = torch.Tensor(ho.hand_pose[:3]).unsqueeze(0) approx_global_orient = approx_global_orient.squeeze(1).squeeze(1) approx_trans = mTc[:3, 3].unsqueeze(0) target_verts = torch.Tensor(ho.hand_verts).unsqueeze(0) pose, trans, rot = util.opt_hand(rh_model, target_verts, hand_pose_in, approx_trans, approx_global_orient) # drec_cnet['hand_pose'] = torch.einsum('bi,ij->bj', [hand_pose_in, rh_model_pkl.hand_components]) drec_cnet['transl'] = trans drec_cnet['global_orient'] = rot drec_cnet['hand_pose'] = pose verts_rh_gen_cnet = rh_model(**drec_cnet).vertices _, h2o, _ = point2point_signed(verts_rh_gen_cnet, dorig['verts_object'].to(device)) drec_cnet['trans_rhand_f'] = drec_cnet['transl'] drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat( drec_cnet['global_orient']).view(-1, 3, 3) drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat(drec_cnet['hand_pose']).view( -1, 15, 3, 3) drec_cnet['verts_object'] = dorig['verts_object'].to(device) drec_cnet['h2o_dist'] = h2o.abs() print( 'Hand fitting err', np.linalg.norm( verts_rh_gen_cnet.squeeze().detach().numpy() - ho.hand_verts, 2, 1).mean()) orig_obj = dorig['mesh_object'][0].v # print(orig_obj.shape, orig_obj) # print('Obj fitting err', np.linalg.norm(orig_obj - ho.obj_verts, 2, 1).mean()) drec_rnet = refine_net(**drec_cnet) mano_out = rh_model(**drec_rnet) verts_rh_gen_rnet = mano_out.vertices joints_out = mano_out.joints if vis: for cId in range(0, len(dorig['bps_object'])): try: from copy import deepcopy meshes = deepcopy(dorig['mesh_object']) obj_mesh = meshes[cId] except: obj_mesh = points_to_spheres(to_cpu( dorig['verts_object'][cId]), radius=0.002, vc=name_to_rgb['green']) hand_mesh_gen_cnet = Mesh(v=to_cpu(verts_rh_gen_cnet[cId]), f=rh_model.faces, vc=name_to_rgb['pink']) hand_mesh_gen_rnet = Mesh(v=to_cpu(verts_rh_gen_rnet[cId]), f=rh_model.faces, vc=name_to_rgb['gray']) if 'rotmat' in dorig: rotmat = dorig['rotmat'][cId].T obj_mesh = obj_mesh.rotate_vertices(rotmat) hand_mesh_gen_cnet.rotate_vertices(rotmat) hand_mesh_gen_rnet.rotate_vertices(rotmat) # print('rotmat', rotmat) hand_mesh_gen_cnet.reset_face_normals() hand_mesh_gen_rnet.reset_face_normals() # mvs[0][cId].set_static_meshes([hand_mesh_gen_cnet] + obj_mesh, blocking=True) # mvs[0][cId].set_static_meshes([hand_mesh_gen_rnet,obj_mesh], blocking=True) mvs[0][cId].set_static_meshes( [hand_mesh_gen_rnet, hand_mesh_gen_cnet, obj_mesh], blocking=True) if save: save_path = os.path.join(save_dir, str(cId)) makepath(save_path) hand_mesh_gen_rnet.write_ply(filename=save_path + '/rh_mesh_gen_%d.ply' % cId) obj_mesh[0].write_ply(filename=save_path + '/obj_mesh_%d.ply' % cId) return verts_rh_gen_rnet, joints_out
def get_meshes(dorig, coarse_net, refine_net, rh_model, save=False, save_dir=None): with torch.no_grad(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') drec_cnet = coarse_net.sample_poses(dorig['bps_object']) output = rh_model(**drec_cnet) verts_rh_gen_cnet = output.vertices _, h2o, _ = point2point_signed(verts_rh_gen_cnet, dorig['verts_object'].to(device)) drec_cnet['trans_rhand_f'] = drec_cnet['transl'] drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat( drec_cnet['global_orient']).view(-1, 3, 3) drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat( drec_cnet['hand_pose']).view(-1, 15, 3, 3) drec_cnet['verts_object'] = dorig['verts_object'].to(device) drec_cnet['h2o_dist'] = h2o.abs() drec_rnet = refine_net(**drec_cnet) output = rh_model(**drec_rnet) print("hand shape {} should be idtenty".format(output.betas)) verts_rh_gen_rnet = output.vertices # Reorder joints to match visualization utilities (joint_mapper) (TODO) joints_rh_gen_rnet = output.joints # [:, [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20]] transforms_rh_gen_rnet = output.transforms # [:, [0, 13, 14, 15, 1, 2, 3, 4, 5, 6, 10, 11, 12, 7, 8, 9]] joints_rh_gen_rnet = to_cpu(joints_rh_gen_rnet) transforms_rh_gen_rnet = to_cpu(transforms_rh_gen_rnet) gen_meshes = [] for cId in range(0, len(dorig['bps_object'])): try: obj_mesh = dorig['mesh_object'][cId] except: obj_mesh = points2sphere(points=to_cpu( dorig['verts_object'][cId]), radius=0.002, vc=[145, 191, 219]) hand_mesh_gen_rnet = Mesh(vertices=to_cpu(verts_rh_gen_rnet[cId]), faces=rh_model.faces, vc=[145, 191, 219]) hand_joint_gen_rnet = joints_rh_gen_rnet[cId] hand_transform_gen_rnet = transforms_rh_gen_rnet[cId] if 'rotmat' in dorig: rotmat = dorig['rotmat'][cId].T obj_mesh = obj_mesh.rotate_vertices(rotmat) hand_mesh_gen_rnet.rotate_vertices(rotmat) hand_joint_gen_rnet = hand_joint_gen_rnet @ rotmat.T hand_transform_gen_rnet[:, :, :3, :3] = np.matmul( rotmat[None, ...], hand_transform_gen_rnet[:, :, :3, :3]) gen_meshes.append([obj_mesh, hand_mesh_gen_rnet]) if save: makepath(save_dir) print("saving dir {}".format(save_dir)) np.save(save_dir + '/joints_%d.npy' % cId, hand_joint_gen_rnet) np.save(save_dir + '/trans_%d.npy' % cId, hand_transform_gen_rnet) return gen_meshes