Exemple #1
0
    def eval(self):
        self.coarse_net.eval()
        self.refine_net.eval()
        ds_name = self.cfg.dataset_dir.split('/')[-1]

        total_error_cnet = {}
        total_error_rnet = {}
        for split, ds in [('val', self.ds_val), ('test', self.ds_test),
                          ('train', self.ds_train)]:

            mean_error_cnet = []
            mean_error_rnet = []
            with torch.no_grad():
                for dorig in ds:

                    dorig = {k: dorig[k].to(self.device) for k in dorig.keys()}

                    MESH_SCALER = 1000

                    drec_cnet = self.coarse_net(**dorig)
                    verts_hand_cnet = self.rhm_train(**drec_cnet).vertices

                    mean_error_cnet.append(
                        torch.mean(
                            torch.abs(dorig['verts_rhand'] - verts_hand_cnet) *
                            MESH_SCALER))

                    ########## refine net
                    params_rnet = self.params_rnet(dorig)
                    dorig.update(params_rnet)
                    drec_rnet = self.refine_net(**dorig)
                    verts_hand_mano = self.rhm_train(**drec_rnet).vertices

                    mean_error_rnet.append(
                        torch.mean(
                            torch.abs(dorig['verts_rhand'] - verts_hand_mano) *
                            MESH_SCALER))

            total_error_cnet[split] = {
                'v2v_mae': float(to_cpu(torch.stack(mean_error_cnet).mean()))
            }
            total_error_rnet[split] = {
                'v2v_mae': float(to_cpu(torch.stack(mean_error_rnet).mean()))
            }

        outpath = makepath(os.path.join(
            self.cfg.work_dir, 'evaluations', 'ds_%s' % ds_name,
            os.path.basename(self.cfg.best_cnet).replace(
                '.pt', '_CoarseNet.json')),
                           isfile=True)

        with open(outpath, 'w') as f:
            json.dump(total_error_cnet, f)

        with open(outpath.replace('.json', '_RefineNet.json'), 'w') as f:
            json.dump(total_error_rnet, f)

        return total_error_cnet, total_error_rnet
Exemple #2
0
def vis_results(dorig, coarse_net, refine_net, rh_model , save=False, save_dir = None):

    with torch.no_grad():
        imw, imh = 1920, 780
        cols = len(dorig['bps_object'])
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        mvs = MeshViewers(window_width=imw, window_height=imh, shape=[1, cols], keepalive=True)

        drec_cnet = coarse_net.sample_poses(dorig['bps_object'])
        verts_rh_gen_cnet = rh_model(**drec_cnet).vertices

        _, h2o, _ = point2point_signed(verts_rh_gen_cnet, dorig['verts_object'].to(device))

        drec_cnet['trans_rhand_f'] = drec_cnet['transl']
        drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat(drec_cnet['global_orient']).view(-1, 3, 3)
        drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat(drec_cnet['hand_pose']).view(-1, 15, 3, 3)
        drec_cnet['verts_object'] = dorig['verts_object'].to(device)
        drec_cnet['h2o_dist']= h2o.abs()

        drec_rnet = refine_net(**drec_cnet)
        verts_rh_gen_rnet = rh_model(**drec_rnet).vertices


        for cId in range(0, len(dorig['bps_object'])):
            try:
                from copy import deepcopy
                meshes = deepcopy(dorig['mesh_object'])
                obj_mesh = meshes[cId]
            except:
                obj_mesh = points_to_spheres(to_cpu(dorig['verts_object'][cId]), radius=0.002, vc=name_to_rgb['green'])

            hand_mesh_gen_cnet = Mesh(v=to_cpu(verts_rh_gen_cnet[cId]), f=rh_model.faces, vc=name_to_rgb['pink'])
            hand_mesh_gen_rnet = Mesh(v=to_cpu(verts_rh_gen_rnet[cId]), f=rh_model.faces, vc=name_to_rgb['gray'])

            if 'rotmat' in dorig:
                rotmat = dorig['rotmat'][cId].T
                obj_mesh = obj_mesh.rotate_vertices(rotmat)
                hand_mesh_gen_cnet.rotate_vertices(rotmat)
                hand_mesh_gen_rnet.rotate_vertices(rotmat)

            hand_mesh_gen_cnet.reset_face_normals()
            hand_mesh_gen_rnet.reset_face_normals()

            # mvs[0][cId].set_static_meshes([hand_mesh_gen_cnet] + obj_mesh, blocking=True)
            mvs[0][cId].set_static_meshes([hand_mesh_gen_rnet,obj_mesh], blocking=True)

            if save:
                save_path = os.path.join(save_dir, str(cId))
                makepath(save_path)
                hand_mesh_gen_rnet.write_ply(filename=save_path + '/rh_mesh_gen_%d.ply' % cId)
                obj_mesh[0].write_ply(filename=save_path + '/obj_mesh_%d.ply' % cId)
Exemple #3
0
def get_meshes(dorig, coarse_net, refine_net, rh_model, save=False, save_dir=None):
    with torch.no_grad():

        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        drec_cnet = coarse_net.sample_poses(dorig['bps_object'])
        verts_rh_gen_cnet = rh_model(**drec_cnet).vertices

        _, h2o, _ = point2point_signed(verts_rh_gen_cnet, dorig['verts_object'].to(device))

        drec_cnet['trans_rhand_f'] = drec_cnet['transl']
        drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat(drec_cnet['global_orient']).view(-1, 3, 3)
        drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat(drec_cnet['hand_pose']).view(-1, 15, 3, 3)
        drec_cnet['verts_object'] = dorig['verts_object'].to(device)
        drec_cnet['h2o_dist'] = h2o.abs()

        drec_rnet = refine_net(**drec_cnet)
        verts_rh_gen_rnet = rh_model(**drec_rnet).vertices

        gen_meshes = []
        for cId in range(0, len(dorig['bps_object'])):
            try:
                obj_mesh = dorig['mesh_object'][cId]
            except:
                obj_mesh = points2sphere(points=to_cpu(dorig['verts_object'][cId]), radius=0.002, vc=name_to_rgb['yellow'])

            hand_mesh_gen_rnet = Mesh(vertices=to_cpu(verts_rh_gen_rnet[cId]), faces=rh_model.faces, vc=[245, 191, 177])

            if 'rotmat' in dorig:
                rotmat = dorig['rotmat'][cId].T
                obj_mesh = obj_mesh.rotate_vertices(rotmat)
                hand_mesh_gen_rnet.rotate_vertices(rotmat)

            gen_meshes.append([obj_mesh, hand_mesh_gen_rnet])
            if save:
                save_path = os.path.join(save_dir, str(cId))
                makepath(save_path)
                hand_mesh_gen_rnet.export(filename=save_path + '/rh_mesh_gen_%d.ply' % cId)
                obj_mesh.export(filename=save_path + '/obj_mesh_%d.ply' % cId)

        return gen_meshes
Exemple #4
0
def vis_results(ho,
                dorig,
                coarse_net,
                refine_net,
                rh_model,
                save=False,
                save_dir=None,
                rh_model_pkl=None,
                vis=True):

    # with torch.no_grad():
    imw, imh = 1920, 780
    cols = len(dorig['bps_object'])
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    device = torch.device('cpu')

    if vis:
        mvs = MeshViewers(window_width=imw,
                          window_height=imh,
                          shape=[1, cols],
                          keepalive=True)

    # drec_cnet = coarse_net.sample_poses(dorig['bps_object'])
    #
    # for k in drec_cnet.keys():
    #     print('drec cnet', k, drec_cnet[k].shape)

    # verts_rh_gen_cnet = rh_model(**drec_cnet).vertices

    drec_cnet = {}

    hand_pose_in = torch.Tensor(ho.hand_pose[3:]).unsqueeze(0)
    mano_out_1 = rh_model_pkl(hand_pose=hand_pose_in)
    hand_pose_in = mano_out_1.hand_pose

    mTc = torch.Tensor(ho.hand_mTc)
    approx_global_orient = rotmat2aa(mTc[:3, :3].unsqueeze(0))

    if torch.isnan(approx_global_orient).any():  # Using honnotate?
        approx_global_orient = torch.Tensor(ho.hand_pose[:3]).unsqueeze(0)

    approx_global_orient = approx_global_orient.squeeze(1).squeeze(1)
    approx_trans = mTc[:3, 3].unsqueeze(0)

    target_verts = torch.Tensor(ho.hand_verts).unsqueeze(0)

    pose, trans, rot = util.opt_hand(rh_model, target_verts, hand_pose_in,
                                     approx_trans, approx_global_orient)

    # drec_cnet['hand_pose'] = torch.einsum('bi,ij->bj', [hand_pose_in, rh_model_pkl.hand_components])
    drec_cnet['transl'] = trans
    drec_cnet['global_orient'] = rot
    drec_cnet['hand_pose'] = pose

    verts_rh_gen_cnet = rh_model(**drec_cnet).vertices

    _, h2o, _ = point2point_signed(verts_rh_gen_cnet,
                                   dorig['verts_object'].to(device))

    drec_cnet['trans_rhand_f'] = drec_cnet['transl']
    drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat(
        drec_cnet['global_orient']).view(-1, 3, 3)
    drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat(drec_cnet['hand_pose']).view(
        -1, 15, 3, 3)
    drec_cnet['verts_object'] = dorig['verts_object'].to(device)
    drec_cnet['h2o_dist'] = h2o.abs()

    print(
        'Hand fitting err',
        np.linalg.norm(
            verts_rh_gen_cnet.squeeze().detach().numpy() - ho.hand_verts, 2,
            1).mean())
    orig_obj = dorig['mesh_object'][0].v
    # print(orig_obj.shape, orig_obj)
    # print('Obj fitting err', np.linalg.norm(orig_obj - ho.obj_verts, 2, 1).mean())

    drec_rnet = refine_net(**drec_cnet)
    mano_out = rh_model(**drec_rnet)
    verts_rh_gen_rnet = mano_out.vertices
    joints_out = mano_out.joints

    if vis:
        for cId in range(0, len(dorig['bps_object'])):
            try:
                from copy import deepcopy
                meshes = deepcopy(dorig['mesh_object'])
                obj_mesh = meshes[cId]
            except:
                obj_mesh = points_to_spheres(to_cpu(
                    dorig['verts_object'][cId]),
                                             radius=0.002,
                                             vc=name_to_rgb['green'])

            hand_mesh_gen_cnet = Mesh(v=to_cpu(verts_rh_gen_cnet[cId]),
                                      f=rh_model.faces,
                                      vc=name_to_rgb['pink'])
            hand_mesh_gen_rnet = Mesh(v=to_cpu(verts_rh_gen_rnet[cId]),
                                      f=rh_model.faces,
                                      vc=name_to_rgb['gray'])

            if 'rotmat' in dorig:
                rotmat = dorig['rotmat'][cId].T
                obj_mesh = obj_mesh.rotate_vertices(rotmat)
                hand_mesh_gen_cnet.rotate_vertices(rotmat)
                hand_mesh_gen_rnet.rotate_vertices(rotmat)
                # print('rotmat', rotmat)

            hand_mesh_gen_cnet.reset_face_normals()
            hand_mesh_gen_rnet.reset_face_normals()

            # mvs[0][cId].set_static_meshes([hand_mesh_gen_cnet] + obj_mesh, blocking=True)
            # mvs[0][cId].set_static_meshes([hand_mesh_gen_rnet,obj_mesh], blocking=True)
            mvs[0][cId].set_static_meshes(
                [hand_mesh_gen_rnet, hand_mesh_gen_cnet, obj_mesh],
                blocking=True)

            if save:
                save_path = os.path.join(save_dir, str(cId))
                makepath(save_path)
                hand_mesh_gen_rnet.write_ply(filename=save_path +
                                             '/rh_mesh_gen_%d.ply' % cId)
                obj_mesh[0].write_ply(filename=save_path +
                                      '/obj_mesh_%d.ply' % cId)

    return verts_rh_gen_rnet, joints_out
Exemple #5
0
def get_meshes(dorig,
               coarse_net,
               refine_net,
               rh_model,
               save=False,
               save_dir=None):
    with torch.no_grad():

        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

        drec_cnet = coarse_net.sample_poses(dorig['bps_object'])
        output = rh_model(**drec_cnet)
        verts_rh_gen_cnet = output.vertices

        _, h2o, _ = point2point_signed(verts_rh_gen_cnet,
                                       dorig['verts_object'].to(device))

        drec_cnet['trans_rhand_f'] = drec_cnet['transl']
        drec_cnet['global_orient_rhand_rotmat_f'] = aa2rotmat(
            drec_cnet['global_orient']).view(-1, 3, 3)
        drec_cnet['fpose_rhand_rotmat_f'] = aa2rotmat(
            drec_cnet['hand_pose']).view(-1, 15, 3, 3)
        drec_cnet['verts_object'] = dorig['verts_object'].to(device)
        drec_cnet['h2o_dist'] = h2o.abs()

        drec_rnet = refine_net(**drec_cnet)
        output = rh_model(**drec_rnet)
        print("hand shape {} should be idtenty".format(output.betas))
        verts_rh_gen_rnet = output.vertices

        # Reorder joints to match visualization utilities (joint_mapper) (TODO)
        joints_rh_gen_rnet = output.joints  # [:, [0, 13, 14, 15, 16, 1, 2, 3, 17, 4, 5, 6, 18, 10, 11, 12, 19, 7, 8, 9, 20]]
        transforms_rh_gen_rnet = output.transforms  # [:, [0, 13, 14, 15, 1, 2, 3, 4, 5, 6, 10, 11, 12, 7, 8, 9]]
        joints_rh_gen_rnet = to_cpu(joints_rh_gen_rnet)
        transforms_rh_gen_rnet = to_cpu(transforms_rh_gen_rnet)

        gen_meshes = []
        for cId in range(0, len(dorig['bps_object'])):
            try:
                obj_mesh = dorig['mesh_object'][cId]
            except:
                obj_mesh = points2sphere(points=to_cpu(
                    dorig['verts_object'][cId]),
                                         radius=0.002,
                                         vc=[145, 191, 219])

            hand_mesh_gen_rnet = Mesh(vertices=to_cpu(verts_rh_gen_rnet[cId]),
                                      faces=rh_model.faces,
                                      vc=[145, 191, 219])
            hand_joint_gen_rnet = joints_rh_gen_rnet[cId]
            hand_transform_gen_rnet = transforms_rh_gen_rnet[cId]

            if 'rotmat' in dorig:
                rotmat = dorig['rotmat'][cId].T
                obj_mesh = obj_mesh.rotate_vertices(rotmat)
                hand_mesh_gen_rnet.rotate_vertices(rotmat)

                hand_joint_gen_rnet = hand_joint_gen_rnet @ rotmat.T
                hand_transform_gen_rnet[:, :, :3, :3] = np.matmul(
                    rotmat[None, ...], hand_transform_gen_rnet[:, :, :3, :3])

            gen_meshes.append([obj_mesh, hand_mesh_gen_rnet])
            if save:
                makepath(save_dir)
                print("saving dir {}".format(save_dir))
                np.save(save_dir + '/joints_%d.npy' % cId, hand_joint_gen_rnet)
                np.save(save_dir + '/trans_%d.npy' % cId,
                        hand_transform_gen_rnet)

        return gen_meshes