Exemple #1
0
def test_newtons_first_law_rest():
    # When no external force acts, bodies at rest remain at rest.
    cube_verts = torch.FloatTensor(
        [
            [1.0, 1.0, 1.0],
            [1.0, -1.0, 1.0],
            [1.0, -1.0, -1.0],
            [1.0, 1.0, -1.0],
            [-1.0, 1.0, 1.0],
            [-1.0, -1.0, 1.0],
            [-1.0, -1.0, -1.0],
            [-1.0, 1.0, -1.0],
        ]
    )
    cube = RigidBody(cube_verts)
    sim = Simulator([cube])
    sim.step()
    assert torch.allclose(cube.position, torch.zeros(3))
    sim.step()
    assert torch.allclose(cube.position, torch.zeros(3))
Exemple #2
0
def render_samples(sim_steps,
                   sim_dtime,
                   render_every,
                   restitution,
                   renderer,
                   body,
                   faces,
                   textures,
                   record_trajectory=False):
    # Initialize the simulator with the body at the origin.
    sim = Simulator([body],
                    dtime=sim_dtime,
                    engine=SemiImplicitEulerWithContacts()
                    if restitution else EulerIntegrator())
    # Run the simulation
    sequence = []
    if record_trajectory:
        poss, ornts, linvels, angvels = [], [], [], []

        def record(body):
            poss.append(body.position.detach().cpu())
            ornts.append(body.orientation.detach().cpu())
            linvels.append(body.linear_velocity.detach().cpu())
            angvels.append(body.angular_velocity.detach().cpu())

    for t in trange(sim_steps, leave=False):
        sim.step()
        if t % render_every == 0:
            if record_trajectory:
                record(body)
            rgba = renderer.forward(body.get_world_vertices().unsqueeze(0),
                                    faces, textures)
            img = (rgba[0].permute(1, 2, 0).detach().cpu().numpy() *
                   255).astype(np.uint8)
            sequence.append(img)
    if record_trajectory:
        f = lambda v: torch.stack(v).numpy()
        return sequence, f(poss), f(ornts), f(linvels), f(angvels)
    else:
        return sequence
Exemple #3
0
def test_cube_with_gravity():
    # Add gravity to the cube.
    cube_verts = torch.FloatTensor(
        [
            [1.0, 1.0, 1.0],
            [1.0, -1.0, 1.0],
            [1.0, -1.0, -1.0],
            [1.0, 1.0, -1.0],
            [-1.0, 1.0, 1.0],
            [-1.0, -1.0, 1.0],
            [-1.0, -1.0, -1.0],
            [-1.0, 1.0, -1.0],
        ]
    )
    cube = RigidBody(cube_verts)
    gravity = Gravity()
    direction = torch.tensor([0.0, 0.0, -1.0])
    cube.add_external_force(gravity)
    sim = Simulator([cube])
    sim.step()
    assert torch.allclose(cube.linear_velocity, 0.3333333 * direction)
    assert torch.allclose(cube.position, 0.0111111 * direction)
    sim.step()
    assert torch.allclose(cube.linear_velocity, 0.66666667 * direction)
    assert torch.allclose(cube.position, 0.0333333 * direction)
    sim.step()
    assert torch.allclose(cube.linear_velocity, 1.0 * direction)
    assert torch.allclose(cube.position, 0.0666667 * direction)
Exemple #4
0
def test_newtons_first_law_motion():
    # When no external force acts, a body with constant velocity
    # continues to move with that velocity.
    cube_verts = torch.FloatTensor(
        [
            [1.0, 1.0, 1.0],
            [1.0, -1.0, 1.0],
            [1.0, -1.0, -1.0],
            [1.0, 1.0, -1.0],
            [-1.0, 1.0, 1.0],
            [-1.0, -1.0, 1.0],
            [-1.0, -1.0, -1.0],
            [-1.0, 1.0, -1.0],
        ]
    )
    cube = RigidBody(cube_verts)
    # Give the cube a linear momentum of `(8, 8, 8)` (it's mass is `8`),
    # so, the velocity becomes `1` meter per second. Our frame rate by
    # default, is 30 Hz, i.e., 0.033 meters per frame.
    cube.linear_momentum = torch.ones(3, dtype=torch.float32) * 8
    sim = Simulator([cube])
    sim.step()
    assert torch.allclose(cube.position, 0.0333 * torch.ones(3), atol=1e-4)
    sim.step()
    assert torch.allclose(cube.position, 0.0667 * torch.ones(3), atol=1e-4)
    sim.step()
    assert torch.allclose(cube.position, 0.1 * torch.ones(3), atol=1e-4)
Exemple #5
0
        # Add gravity
        gravity = ConstantForce(
            magnitude=10.0,
            direction=torch.tensor([0, -1, 0]),
            device=device,
        )
        body_gt.add_external_force(gravity)

        sim_gt = Simulator([body_gt])

        # 2 seconds; 30 fps
        imgs_gt = []
        with torch.no_grad():
            for t in range(sim_steps):
                sim_gt.step()
                rgba = renderer.forward(
                    body_gt.get_world_vertices().unsqueeze(0), faces, textures)
                imgs_gt.append(rgba)

        masses_est = torch.nn.Parameter(
            (0.2) * torch.ones_like(masses_gt),
            requires_grad=True,
        )
        massmodel = MassModel(
            masses_est,
            uniform_density=True,
            minmass=1e-9,
            maxmass=1e9,
        )
        massmodel.to(device)
Exemple #6
0
    sim_duration = 2.0
    fps = 30
    sim_substeps = 32
    dtime = (1 / 30) / sim_substeps
    sim_steps = int(sim_duration / dtime)
    render_every = sim_substeps

    # Initialize the simulator with the body at the origin.
    sim = Simulator(bodies=[body], engine=SemiImplicitEulerWithContacts(), dtime=dtime,)

    # Initialize the renderer.
    renderer = SoftRenderer(camera_mode="look_at", device=device)
    camera_distance = 10.0
    elevation = 30.0
    azimuth = 0.0
    renderer.set_eye_from_angles(camera_distance, elevation, azimuth)

    # Run the simulation.
    writer = imageio.get_writer(outfile, mode="I")
    for i in trange(sim_steps):
        sim.step()
        # print("Body is at:", body.position)
        if i % render_every == 0:
            rgba = renderer.forward(
                body.get_world_vertices().unsqueeze(0), faces, textures
            )
            img = rgba[0].permute(1, 2, 0).detach().cpu().numpy()
            writer.append_data((255 * img).astype(np.uint8))
    writer.close()