def parse_input(self, X): """Parse and create features for the `subgraph_matching` kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- out : list The extracted adjacency matrices for any given input. """ if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') else: i = 0 out = list() for (idx, x) in enumerate(iter(X)): is_iter = False if isinstance(x, collections.Iterable): is_iter = True x = list(x) if type(x) is Graph: g = Graph( x.get_adjacency_matrix(), x.get_labels(purpose="adjacency"), x.get_labels(purpose="adjacency", label_type="edge"), self._graph_format) elif is_iter and len(x) in [0, 3]: x = list(x) if len(x) == 0: warnings.warn('Ignoring empty element' + ' on index: ' + str(idx)) continue elif len(x) == 3: g = Graph(x[0], x[1], x[2], "adjacency") g.change_format(self._graph_format) else: raise TypeError('each element of X must be either a ' + 'graph object or a list with at least ' + 'a graph like object and node, ' + 'edge labels dict \n') n = g.nv() E = g.get_edge_dictionary() L = g.get_labels(purpose="dictionary", return_none=(self.kv is None)) Le = g.get_labels(purpose="dictionary", label_type="edge", return_none=(self.ke is None)) Er = set( (a, b) for a in E.keys() for b in E[a].keys() if a != b) i += 1 out.append((n, Er, L, Le)) if i == 0: raise ValueError('parsed input is empty') return out
def parse_input(self, X): """Parse and check the given input for the Graph Hopper kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). Returns ------- out : np.array, shape=(len(X), n_labels) A np array for frequency (cols) histograms for all Graphs (rows). """ if not isinstance(X, Iterable): raise TypeError('input must be an iterable\n') else: ni = 0 diam = list() graphs = list() for (i, x) in enumerate(iter(X)): is_iter = False if isinstance(x, Iterable): is_iter = True x = list(x) if type(x) is Graph: g = Graph(x.get_adjacency_matrix(), x.get_labels(purpose="adjacency"), {}, self._graph_format) elif is_iter and len(x) == 0 or len(x) >= 2: if len(x) == 0: warn('Ignoring empty element on index: ' + str(i)) continue elif len(x) >= 2: g = Graph(x[0], x[1], {}, "adjacency") g.change_format(self._graph_format) else: raise TypeError('each element of X must be either a ' 'graph object or a list with at least ' 'a graph like object and node, ') spm, attr = g.build_shortest_path_matrix(labels="vertex") nv = g.nv() try: attributes = np.array([attr[j] for j in range(nv)]) except TypeError: raise TypeError( 'All attributes of a single graph should have the same dimension.' ) diam.append(int(np.max(spm[spm < float("Inf")]))) graphs.append((g.get_adjacency_matrix(), nv, attributes)) ni += 1 if self._method_calling == 1: max_diam = self._max_diam = max(diam) + 1 else: max_diam = max(self._max_diam, max(diam) + 1) out = list() for i in range(ni): AM, node_nr, attributes = graphs[i] des = np.zeros(shape=(node_nr, node_nr, max_diam), dtype=int) occ = np.zeros(shape=(node_nr, node_nr, max_diam), dtype=int) # Convert adjacency matrix to dictionary idx_i, idx_j = np.where(AM > 0) ed = defaultdict(dict) for (a, b) in filterfalse(lambda a: a[0] == a[1], zip(idx_i, idx_j)): ed[a][b] = AM[a, b] for j in range(node_nr): A = np.zeros(shape=AM.shape) # Single-source shortest path from node j D, p = dijkstra(ed, j) D = np.array( list(D.get(k, float("Inf")) for k in range(node_nr))) p[j] = -1 # Restrict to the connected component of node j conn_comp = np.where(D < float("Inf"))[0] # To-be DAG adjacency matrix of connected component of node j A_cc = A[conn_comp, :][:, conn_comp] # Adjacency matrix of connected component of node j AM_cc = AM[conn_comp, :][:, conn_comp] D_cc = D[conn_comp] conn_comp_converter = np.zeros(shape=(A.shape[0], 1), dtype=int) for k in range(conn_comp.shape[0]): conn_comp_converter[conn_comp[k]] = k conn_comp_converter = np.vstack([0, conn_comp_converter]) p_cc = conn_comp_converter[ np.array(list(p[k] for k in conn_comp)) + 1] # Number of nodes in connected component of node j conncomp_node_nr = A_cc.shape[0] for v in range(conncomp_node_nr): if p_cc[v] > 0: # Generate A_cc by adding directed edges of form (parent(v), v) A_cc[p_cc[v], v] = 1 # Distance from v to j v_dist = D_cc[v] # All neighbors of v in the undirected graph v_nbs = np.where(AM_cc[v, :] > 0)[0] # Distances of neighbors of v to j v_nbs_dists = D_cc[v_nbs] # All neighbors of v in undirected graph who are # one step closer to j than v is; i.e. SP-DAG parents v_parents = v_nbs[v_nbs_dists == (v_dist - 1)] # Add SP-DAG parents to A_cc A_cc[v_parents, v] = 1 # Computes the descendants & occurence vectors o_j(v), d_j(v) # for all v in the connected component occ_p, des_p = od_vectors_dag(A_cc, D_cc) if des_p.shape[0] == 1 and j == 0: des[j, 0, 0] = des_p occ[j, 0, 0] = occ_p else: # Convert back to the indices of the original graph for v in range(des_p.shape[0]): for l in range(des_p.shape[1]): des[j, conn_comp[v], l] = des_p[v, l] # Convert back to the indices of the original graph for v in range(occ_p.shape[0]): for l in range(occ_p.shape[1]): occ[j, conn_comp[v], l] = occ_p[v, l] M = np.zeros(shape=(node_nr, max_diam, max_diam)) # j loops through choices of root for j in range(node_nr): des_mat_j_root = np.squeeze(des[j, :, :]) occ_mat_j_root = np.squeeze(occ[j, :, :]) # v loops through nodes for v in range(node_nr): for a in range(max_diam): for b in range(a, max_diam): # M[v,:,:] is M[v]; a = node coordinate in path, b = path length M[v, a, b] += des_mat_j_root[v, b - a] * occ_mat_j_root[v, a] if self.calculate_norm_: out.append((M, attributes, np.sum(attributes**2, axis=1))) else: out.append((M, attributes)) return out
def parse_input(self, X): """Parse input and create features, while initializing and/or calculating sub-kernels. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- base_graph_kernel : object Returns base_graph_kernel. Only if called from `fit` or `fit_transform`. K : np.array Returns the kernel matrix. Only if called from `transform` or `fit_transform`. """ # Input validation and parsing if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') else: nx, max_core_number, core_numbers, graphs = 0, 0, [], [] for (idx, x) in enumerate(iter(X)): is_iter = False extra = tuple() if isinstance(x, collections.Iterable): x, is_iter = list(x), True if is_iter and len(x) >= 0: if len(x) == 0: warnings.warn('Ignoring empty element on index: ' + str(idx)) continue elif len(x) == 1: x = Graph(x[0], {}, {}, graph_format="adjacency") elif len(x) == 2: x = Graph(x[0], x[1], {}, graph_format="adjacency") elif len(x) >= 3: if len(x) > 3: extra += tuple(x[3:]) x = Graph(x[0], x[1], x[2], graph_format="adjacency") elif type(x) is Graph: x.desired_format("adjacency") x = Graph( x.get_adjacency_matrix(), x.get_labels(purpose="adjacency", label_type="vertex", return_none=True), x.get_labels(purpose="adjacency", label_type="edge", return_none=True)) else: raise TypeError('each element of X must be either a ' 'graph object or a list with at least ' 'a graph like object and node labels ' 'dict \n') # workaround for leaving a sparse representation for x x.change_format(self._graph_format) c = core_number(x) max_core_number = max(max_core_number, max(c.values())) core_numbers.append(c) graphs.append((x, extra)) nx += 1 if nx == 0: raise ValueError('parsed input is empty') if max_core_number <= self.min_core: raise ValueError( 'The maximum core equals the min_core boundary set in init.') # Add the zero iteration element if self._method_calling == 2: K = np.zeros(shape=(nx, nx)) elif self._method_calling == 3: self._dummy_kernel = dict() K = np.zeros(shape=(nx, self._nx)) # Main base_graph_kernel, indexes_list = dict(), dict() for i in range(max_core_number, self.min_core, -1): subgraphs, indexes = list(), list() for (idx, (cn, (g, extra))) in enumerate(zip(core_numbers, graphs)): vertices = [k for k, v in iteritems(cn) if v >= i] if len(vertices) > 0: # Calculate subgraph and store the index of the non-empty vertices sg = g.get_subgraph(vertices) sub_extra = list() indexes.append(idx) if len(extra) > 0: vs = np.array(sg.get_vertices(purpose='any')) for e in extra: # This case will only be reached by now if the user add the propagation # kernel as subkernel with a custom propagation matrix. This is a workaround! if type(e) is np.array and len(e.shape) == 2: e = e[vs, :][:, vs] sub_extra.append(e) subgraphs.append((sg, ) + tuple(sub_extra)) else: subgraphs.append(sg) indexes = np.array(indexes) indexes_list[i] = indexes # calculate kernel if self._method_calling == 1 and indexes.shape[0] > 0: base_graph_kernel[i] = self.base_graph_kernel_(**self.params_) base_graph_kernel[i].fit(subgraphs) elif self._method_calling == 2 and indexes.shape[0] > 0: base_graph_kernel[i] = self.base_graph_kernel_(**self.params_) ft_subgraph_mat = base_graph_kernel[i].fit_transform(subgraphs) for j in range(indexes.shape[0]): K[indexes[j], indexes] += ft_subgraph_mat[j, :] elif self._method_calling == 3: if self._max_core_number < i or self._fit_indexes[i].shape[ 0] == 0: if len(indexes) > 0: # add a dummy kernel for calculating the diagonal self._dummy_kernel[i] = self.base_graph_kernel_( **self.params_) self._dummy_kernel[i].fit(subgraphs) else: if indexes.shape[0] > 0: subgraph_tmat = self.X[i].transform(subgraphs) for j in range(indexes.shape[0]): K[indexes[j], self._fit_indexes[i]] += subgraph_tmat[j, :] if self._method_calling == 1: self._nx = nx self._max_core_number = max_core_number self._fit_indexes = indexes_list return base_graph_kernel elif self._method_calling == 2: self._nx = nx self._max_core_number = max_core_number self._fit_indexes = indexes_list return K, base_graph_kernel elif self._method_calling == 3: self._t_nx = nx self._max_core_number_trans = max_core_number self._transform_indexes = indexes_list return K
def parse_input(self, X): """Parse and create features for the NSPD kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- M : dict A dictionary with keys all the distances from 0 to self.d and values the the np.arrays with rows corresponding to the non-null input graphs and columns to the enumerations of tuples consisting of pairs of hash values and radius, from all the given graphs of the input (plus the fitted one's on transform). """ if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') else: # Hold the number of graphs ng = 0 # Holds all the data for combinations of r, d data = collections.defaultdict(dict) # Index all keys for combinations of r, d all_keys = collections.defaultdict(dict) for (idx, x) in enumerate(iter(X)): is_iter = False if isinstance(x, collections.Iterable): is_iter, x = True, list(x) if is_iter and len(x) in [0, 3]: if len(x) == 0: warnings.warn('Ignoring empty element' + ' on index: ' + str(idx)) continue else: g = Graph(x[0], x[1], x[2]) g.change_format("adjacency") elif type(x) is Graph: g = Graph( x.get_adjacency_matrix(), x.get_labels(purpose="adjacency", label_type="vertex"), x.get_labels(purpose="adjacency", label_type="edge")) else: raise TypeError('each element of X must have either ' + 'a graph with labels for node and edge ' + 'or 3 elements consisting of a graph ' + 'type object, labels for vertices and ' + 'labels for edges.') # Bring to the desired format g.change_format(self._graph_format) # Take the vertices vertices = set(g.get_vertices(purpose=self._graph_format)) # Extract the dicitionary ed = g.get_edge_dictionary() # Convert edges to tuples edges = {(j, k) for j in ed.keys() for k in ed[j].keys()} # Extract labels for nodes Lv = g.get_labels(purpose=self._graph_format) # and for edges Le = g.get_labels(purpose=self._graph_format, label_type="edge") # Produce all the neighborhoods and the distance pairs # up to the desired radius and maximum distance N, D, D_pair = g.produce_neighborhoods(self.r, purpose="dictionary", with_distances=True, d=self.d) # Hash all the neighborhoods H = self._hash_neighborhoods(vertices, edges, Lv, Le, N, D_pair) if self._method_calling == 1: for d in filterfalse(lambda x: x not in D, range(self.d + 1)): for (A, B) in D[d]: for r in range(self.r + 1): key = (H[r, A], H[r, B]) keys = all_keys[r, d] idx = keys.get(key, None) if idx is None: idx = len(keys) keys[key] = idx data[r, d][ng, idx] = data[r, d].get( (ng, idx), 0) + 1 elif self._method_calling == 3: for d in filterfalse(lambda x: x not in D, range(self.d + 1)): for (A, B) in D[d]: # Based on the edges of the bidirected graph for r in range(self.r + 1): keys = all_keys[r, d] fit_keys = self._fit_keys[r, d] key = (H[r, A], H[r, B]) idx = fit_keys.get(key, None) if idx is None: idx = keys.get(key, None) if idx is None: idx = len(keys) + len(fit_keys) keys[key] = idx data[r, d][ng, idx] = data[r, d].get( (ng, idx), 0) + 1 ng += 1 if ng == 0: raise ValueError('parsed input is empty') if self._method_calling == 1: # A feature matrix for all levels M = dict() for (key, d) in filterfalse(lambda a: len(a[1]) == 0, iteritems(data)): indexes, data = zip(*iteritems(d)) rows, cols = zip(*indexes) M[key] = csr_matrix((data, (rows, cols)), shape=(ng, len(all_keys[key])), dtype=np.int64) self._fit_keys = all_keys self._ngx = ng elif self._method_calling == 3: # A feature matrix for all levels M = dict() for (key, d) in filterfalse(lambda a: len(a[1]) == 0, iteritems(data)): indexes, data = zip(*iteritems(d)) rows, cols = zip(*indexes) M[key] = csr_matrix( (data, (rows, cols)), shape=(ng, len(all_keys[key]) + len(self._fit_keys[key])), dtype=np.int64) self._ngy = ng return M