Exemple #1
0
def generate_file_stats(in_dir_path, out_dir_path, G_name, req):
    G_path = os.path.join(os.path.abspath(in_dir_path), G_name)

    # remove vertices with empty preference list
    subprocess.run(
        ['sed', '-i', '-E', '/^[[:lower:][:upper:][:digit:]]+ :  ;/d', G_path],
        check=True)

    # generate matchings that are needed
    matchings = {}
    for mdesc, cppopt, seadesc in (('H', '-h', sea.HRLQ_HHEURISTIC),
                                   ('S', '-s', sea.STABLE),
                                   ('P', '-p', sea.MAX_CARD_POPULAR),
                                   ('M', '-m', sea.POP_AMONG_MAX_CARD)):
        if mdesc in req:
            mpath = os.path.join(os.path.abspath(out_dir_path),
                                 '{}_{}'.format(mdesc, G_name))
            subprocess.run([
                os.path.join(CPPCODE_DIR, 'graphmatching'), '-A', cppopt, '-i',
                G_path, '-o', mpath
            ],
                           check=True)
            matchings[seadesc] = sea.read_matching(mpath)

    # generate statistics for the files
    sea.generate_hr_tex(graph_parser.read_graph(G_path), matchings,
                        out_dir_path, G_name)
def main():
    # dirpath = '/home/amitrawt/Dropbox/projects/matching/tests+data/hand-crafted'
    dirpath = '/media/amitrawt/5073c06b-f306-4e3a-9e18-23d2c9921453/ms_project/MIN_BP/couples/Experiment3'
    # dirpath = '/home/amitrawt/Dropbox/SEA2017/dataset/HR/mahdian_prob_ml/n1_1000_n2_100_k_5'
    # dirpath = '/home/amitrawt/Dropbox/SEA2017/dataset/HR/mrandom/n1_1000_n2_100_k_5'
    # dirpath = '/home/amitrawt/Dropbox/projects/matching/n1_100_n2_10_k_5'
    # G = graph_parser.read_graph(os.path.join(dirpath, '1000_10_5_100_1.txt'))
    files = ['100-10-10-100-3-5-false-5-5-Iteration1.txt', '100-10-10-100-3-5-false-5-5-Iteration2.txt',
             '100-10-10-100-3-5-false-5-5-Iteration3.txt']
    # files = ['1000_100_5_10_1.txt', '1000_100_5_10_2.txt', '1000_100_5_10_3.txt']
    #files = ['100_10_5_10_1.txt', '100_10_5_10_2.txt', '100_10_5_10_3.txt']

    for filename in files:
        filepath = os.path.join(dirpath, filename)
        G = graph_parser.read_graph(filepath)
        mat_h = rank_matrix(G, G.B, G.A)
        avg_h = avg_rank(G.B, mat_h)
        generate_line_plot('H', 'avg rank',
                           range(0, len(avg_h)), [p for _, p in avg_h],
                           'H_{}.png'.format(filename))

        mat_r = rank_matrix(G, G.A, G.B)
        avg_r = avg_rank(G.A, mat_r)
        generate_line_plot('R', 'avg rank',
                           range(0, len(avg_r)), [p for _, p in avg_r],
                           'R_{}.png'.format(filename))
def main():
    # dirpath = '/home/amitrawt/Dropbox/projects/matching/tests+data/hand-crafted'
    dirpath = '/media/amitrawt/5073c06b-f306-4e3a-9e18-23d2c9921453/ms_project/MIN_BP/couples/Experiment3'
    # dirpath = '/home/amitrawt/Dropbox/SEA2017/dataset/HR/mahdian_prob_ml/n1_1000_n2_100_k_5'
    # dirpath = '/home/amitrawt/Dropbox/SEA2017/dataset/HR/mrandom/n1_1000_n2_100_k_5'
    # dirpath = '/home/amitrawt/Dropbox/projects/matching/n1_100_n2_10_k_5'
    # G = graph_parser.read_graph(os.path.join(dirpath, '1000_10_5_100_1.txt'))
    files = [
        '100-10-10-100-3-5-false-5-5-Iteration1.txt',
        '100-10-10-100-3-5-false-5-5-Iteration2.txt',
        '100-10-10-100-3-5-false-5-5-Iteration3.txt'
    ]
    # files = ['1000_100_5_10_1.txt', '1000_100_5_10_2.txt', '1000_100_5_10_3.txt']
    #files = ['100_10_5_10_1.txt', '100_10_5_10_2.txt', '100_10_5_10_3.txt']

    for filename in files:
        filepath = os.path.join(dirpath, filename)
        G = graph_parser.read_graph(filepath)
        mat_h = rank_matrix(G, G.B, G.A)
        avg_h = avg_rank(G.B, mat_h)
        generate_line_plot('H', 'avg rank', range(0, len(avg_h)),
                           [p for _, p in avg_h], 'H_{}.png'.format(filename))

        mat_r = rank_matrix(G, G.A, G.B)
        avg_r = avg_rank(G.A, mat_r)
        generate_line_plot('R', 'avg rank', range(0, len(avg_r)),
                           [p for _, p in avg_r], 'R_{}.png'.format(filename))
Exemple #4
0
def main():
    parser = argparse.ArgumentParser(description='''Generate statistics in latex
                                format given a bipartite graph and matchings''')
    parser.add_argument('-G', dest='G', help='Bipartite graph', required=True, metavar='')
    parser.add_argument('-S', dest='S', help='Stable matching in the graph', metavar='')
    parser.add_argument('-P', dest='P', help='Max-cardinality popular matching in the graph', metavar='')
    parser.add_argument('-M', dest='M', help='Popular among max-cardinality matchings in the graph', metavar='')
    parser.add_argument('-H', dest='H', help='Hospital proposing HRLQ heuristic in the graph', metavar='')
    parser.add_argument('-R', dest='R', help='Resident proposing HRLQ heuristic in the graph', metavar='')
    parser.add_argument('-O', dest='O', help='Directory where the statistics should be stored', metavar='')
    args = parser.parse_args()

    G, matchings = graph_parser.read_graph(args.G), {}
    for mdesc, mfile in ((STABLE, args.S), (MAX_CARD_POPULAR, args.P),
                         (POP_AMONG_MAX_CARD, args.M), (HRLQ_HHEURISTIC, args.H),
                         (HRLQ_RHEURISTIC, args.R)):
        if mfile is not None:
            M = read_matching(mfile)
            matchings[mdesc] = M
            # if not matching_utils.is_feasible(G, M):
                # raise Exception('{} matching is not feasible for the graph'.format(mdesc))
    # print(args.H, matchings)
    if args.H: # generate heuristic tex file
        generate_heuristic_tex(G, matchings, args.O, os.path.basename(args.G))
    else: # generate tex for M_s, M_p, and M_m
        generate_hr_tex(G, matchings, args.O, os.path.basename(args.G))
Exemple #5
0
def main():
    dirpath = sys.argv[1]
    for entry in os.scandir(dirpath):
        if entry.name.startswith('1000_') and entry.name.endswith('txt'):
            G = graph_parser.read_graph(entry.path)
            count, lq_sum = lq_count(G)
            print(entry.name, '# lq: {}, lq sum: {}'.format(count, lq_sum))
Exemple #6
0
def main():
    import sys
    import graph_parser
    import matching_algos
    if len(sys.argv) < 2:
        print('usage: {} <graph file>'.format(sys.argv[0]))
    else:
        G = graph_parser.read_graph(sys.argv[1])
        M1 = matching_algos.stable_matching_man_woman(copy_graph(G))
        M2 = matching_algos.popular_matching_man_woman(copy_graph(G))
        print(to_easy_format(G, M1), to_easy_format(G, M2), sep='\n')
Exemple #7
0
def generate_stats(dirpath):
    for entry in os.scandir(dirpath):
        if entry.is_file():
            if is_graph_file(entry):
                mpath, statpath = corr_matching_and_stats(entry)
                if os.path.isfile(mpath):
                    M = sea.read_matching(mpath)
                    G = graph_parser.read_graph(entry.path)
                    M_ = envy_free_matching(G, M)
                    print_matching_stats(G, M_, statpath)
        elif entry.is_dir():
            generate_stats(entry.path)
Exemple #8
0
def generate_stats(dirpath):
    for entry in os.scandir(dirpath):
        if entry.is_file():
            if is_graph_file(entry):
                mpath, statpath = corr_matching_and_stats(entry)
                if os.path.isfile(mpath):
                    M = sea.read_matching(mpath)
                    G = graph_parser.read_graph(entry.path)
                    M_ = envy_free_matching(G, M)
                    print_matching_stats(G, M_, statpath)
        elif entry.is_dir():
            generate_stats(entry.path)
def main():
    if len(sys.argv) < 4:
        print('usage: {} <graph-file> <stable-file> <popular-file>'.format(sys.argv[0]))
    else:
        import graph_parser, matching_stats
        gfile, sfile, pfile = sys.argv[1], sys.argv[2], sys.argv[3]
        G = graph_parser.read_graph(gfile)
        #M_stable = stable_matching_hospital_residents(G)
        #print(G, M_stable, sep='\n')
        M_stable = stable_matching_hospital_residents(graph.copy_graph(G))
        M_popular = popular_matching_hospital_residents(graph.copy_graph(G))
        matching_stats.print_matching(G, M_stable, sfile)
        matching_stats.print_matching(G, M_popular, pfile)
Exemple #10
0
def main():
    parser = argparse.ArgumentParser(
        description='''Generate statistics in latex
                                format given a bipartite graph and matchings'''
    )
    parser.add_argument('-G',
                        dest='G',
                        help='Bipartite graph',
                        required=True,
                        metavar='')
    parser.add_argument('-S',
                        dest='S',
                        help='Stable matching in the graph',
                        metavar='')
    parser.add_argument('-P',
                        dest='P',
                        help='Max-cardinality popular matching in the graph',
                        metavar='')
    parser.add_argument(
        '-M',
        dest='M',
        help='Popular among max-cardinality matchings in the graph',
        metavar='')
    parser.add_argument('-H',
                        dest='H',
                        help='Hospital proposing HRLQ heuristic in the graph',
                        metavar='')
    parser.add_argument('-R',
                        dest='R',
                        help='Resident proposing HRLQ heuristic in the graph',
                        metavar='')
    parser.add_argument('-O',
                        dest='O',
                        help='Directory where the statistics should be stored',
                        metavar='')
    args = parser.parse_args()

    G, matchings = graph_parser.read_graph(args.G), {}
    for mdesc, mfile in ((STABLE, args.S), (MAX_CARD_POPULAR, args.P),
                         (POP_AMONG_MAX_CARD, args.M),
                         (HRLQ_HHEURISTIC, args.H), (HRLQ_RHEURISTIC, args.R)):
        if mfile is not None:
            M = read_matching(mfile)
            matchings[mdesc] = M
            # if not matching_utils.is_feasible(G, M):
            # raise Exception('{} matching is not feasible for the graph'.format(mdesc))
    # print(args.H, matchings)
    if args.H:  # generate heuristic tex file
        generate_heuristic_tex(G, matchings, args.O, os.path.basename(args.G))
    else:  # generate tex for M_s, M_p, and M_m
        generate_hr_tex(G, matchings, args.O, os.path.basename(args.G))
def main():
    if len(sys.argv) < 4:
        print('usage: {} <graph-file> <stable-file> <popular-file>'.format(
            sys.argv[0]))
    else:
        import graph_parser, matching_stats
        gfile, sfile, pfile = sys.argv[1], sys.argv[2], sys.argv[3]
        G = graph_parser.read_graph(gfile)
        #M_stable = stable_matching_hospital_residents(G)
        #print(G, M_stable, sep='\n')
        M_stable = stable_matching_hospital_residents(graph.copy_graph(G))
        M_popular = popular_matching_hospital_residents(graph.copy_graph(G))
        matching_stats.print_matching(G, M_stable, sfile)
        matching_stats.print_matching(G, M_popular, pfile)
Exemple #12
0
def generate_file_stats(in_dir_path, out_dir_path, G_name, req):
    G_path = os.path.join(os.path.abspath(in_dir_path), G_name)

    # remove vertices with empty preference list
    subprocess.run(['sed', '-i', '-E', '/^[[:lower:][:upper:][:digit:]]+ :  ;/d', G_path], check=True)

    # generate matchings that are needed
    matchings = {}
    for mdesc, cppopt, seadesc in (('H', '-h', sea.HRLQ_HHEURISTIC), ('S', '-s', sea.STABLE),
                                   ('P', '-p', sea.MAX_CARD_POPULAR), ('M', '-m', sea.POP_AMONG_MAX_CARD)):
        if mdesc in req:
            mpath = os.path.join(os.path.abspath(out_dir_path), '{}_{}'.format(mdesc, G_name))
            subprocess.run([os.path.join(CPPCODE_DIR, 'graphmatching'), '-A', cppopt,
                            '-i', G_path, '-o', mpath], check=True)
            matchings[seadesc] = sea.read_matching(mpath)

    # generate statistics for the files
    sea.generate_hr_tex(graph_parser.read_graph(G_path), matchings, out_dir_path, G_name)
def main():
    G = graph_parser.read_graph(sys.argv[1])
    G1 = hreduction(graph.copy_graph(G))
    print(graph.graph_to_UTF8_string(G1))
def main():
    G = graph_parser.read_graph(sys.argv[1])
    G1 = hreduction(graph.copy_graph(G))
    print(graph.graph_to_UTF8_string(G1))
def main():
    import sys
    if len(sys.argv) < 2:
        print('usage: {} <graph file>'.format(sys.argv[0]))
    else:
        G = graph_parser.read_graph(sys.argv[1])
def main():
    import sys
    if len(sys.argv) < 2:
        print('usage: {} <graph file>'.format(sys.argv[0]))
    else:
        G = graph_parser.read_graph(sys.argv[1])