Exemple #1
0
    def prediction_model(self):

        if self.PREDICTION_MODEL:
            with open(self.PREDICTION_MODEL, "r") as inf:
                self.assignments = np.fromiter(inf.readlines(), dtype=np.int32)

        else:
            if self.graph_modification_functions:
                self.G = self._edge_expansion(self.G)
            self.assignments = self.prediction_model_algorithm.generate_prediction_model(
                self.G, self.num_iterations, self.num_partitions,
                self.assignments, self.fixed)

        if self.verbose > 0:
            print("PREDICTION MODEL")
            print("----------------\n")

        run_metrics = [self._print_score()]
        self._print_assignments()

        if self.verbose > 0:
            nodes_fixed = len([o for o in self.fixed if o == 1])
            print("\nFixed: {}".format(nodes_fixed))

            utils.print_partitions(self.G, self.assignments,
                                   self.num_partitions)

        if self.use_virtual_nodes:
            self.init_virtual_nodes()

        return run_metrics
Exemple #2
0
    def batch_arrival(self):
        if self.verbose > 0:
            print("Assigning in batches of {}".format(self.restream_batches))
            print("--------------------------------\n")

        if self.PARTITIONER_ALGORITHM == 'SCOTCH':
            # update SCOTCH Strategy to 'balance' partition weights, rather than  default 'quality' strategy
            self.partition_algorithm.partitionStrategy = 'balance'

        batch_arrived = []
        run_metrics = []
        for i, a in enumerate(self.arrival_order):

            # check if node is already arrived
            if self.fixed[a] == 1:
                continue

            # GRAPH MODIFICATION FUNCTIONS
            if self.graph_modification_functions:

                # remove nodes that don't need a shelter
                if self.simulated_arrival_list[a] == 0:
                    self.G.remove_node(a)
                    continue

                # set 100% node weight for those that need a shelter
                if self.alter_arrived_node_weight_to_100:
                    self.G.node[a]['weight'] = 100

            # skip nodes that don't need a shelter
            if self.simulated_arrival_list[a] == 0:
                continue

            batch_arrived.append(a)

            # batch processing
            if self.restream_batches == len(batch_arrived):
                run_metrics += self.process_batch(batch_arrived)
                if not self.sliding_window:
                    batch_arrived = []

        # process remaining nodes in incomplete batch
        run_metrics += self.process_batch(batch_arrived, assign_all=True)

        # remove nodes not fixed
        for i in range(0, len(self.assignments)):
            if self.fixed[i] == -1:
                self.assignments[i] = -1

        if self.verbose > 0:
            self._print_assignments()

            nodes_fixed = len([o for o in self.fixed if o == 1])
            print("\nFixed: {}".format(nodes_fixed))

            utils.print_partitions(self.G, self.assignments,
                                   self.num_partitions)

        return run_metrics
Exemple #3
0
    def assign_cut_off(self):
        # stop assignments when x% of arriving people is assinged
        cut_off_value = int(self.prediction_model_cut_off *
                            self.number_simulated_arrivals)
        # @deprecated cut_off_value when x% of whole population arrives
        #cut_off_value = int(self.prediction_model_cut_off * self.G.number_of_nodes())
        if self.verbose > 0:
            if self.prediction_model_cut_off == 0:
                print("Discarding prediction model\n")
            else:
                print(
                    "Assign first {} arrivals using prediction model, then discard\n"
                    .format(cut_off_value))

        # fix arrivals
        for a in self.arrival_order:
            # check if node needs a shelter
            if self.simulated_arrival_list[a] == 0:
                continue

            # set 100% node weight for those that need a shelter
            if self.graph_modification_functions and self.alter_arrived_node_weight_to_100:
                self.G.node[a]['weight'] = 100

            nodes_fixed = len([o for o in self.fixed if o == 1])
            if nodes_fixed >= cut_off_value:
                break
            self.fixed[a] = 1
            self.nodes_arrived.append(a)

        # remove nodes not fixed, ie. discard prediction model
        for i in range(0, len(self.assignments)):
            if self.fixed[i] == -1:
                self.assignments[i] = -1

        GSub = self.G.subgraph(self.nodes_arrived)

        run_metrics = [self._print_score(GSub)]
        self._print_assignments()

        if self.verbose > 0:
            nodes_fixed = len([o for o in self.fixed if o == 1])
            print("\nFixed: {}".format(nodes_fixed))

            utils.print_partitions(self.G, self.assignments,
                                   self.num_partitions)

        return run_metrics
Exemple #4
0
    def prediction_model(self):
        if self.PREDICTION_MODEL_ALGORITHM == 'SCOTCH':
            # update SCOTCH Strategy to 'quality' partition weights for prediction model
            self.partition_algorithm.partitionStrategy = 'quality'

        if self.apply_prediction_model_weights:
            self.apply_graph_prediction_weights()

        if self.PREDICTION_MODEL:
            with open(self.PREDICTION_MODEL, "r") as inf:
                self.assignments = np.fromiter(inf.readlines(), dtype=np.int32)
                self.assignments_prediction_model = np.array(self.assignments,
                                                             copy=True)
        else:
            if self.graph_modification_functions:
                self.G = self._edge_expansion(self.G)
            self.assignments = self.prediction_model_algorithm.generate_prediction_model(
                self.G, self.num_iterations, self.num_partitions,
                self.assignments, self.fixed)
            self.assignments_prediction_model = np.array(self.assignments,
                                                         copy=True)

        if self.verbose > 0:
            print("PREDICTION MODEL")
            print("----------------\n")

        run_metrics = [self._print_score()]
        self._print_assignments()

        if self.verbose > 0:
            nodes_fixed = len([o for o in self.fixed if o == 1])
            print("\nFixed: {}".format(nodes_fixed))

            utils.print_partitions(self.G, self.assignments,
                                   self.num_partitions)

        if self.use_virtual_nodes:
            self.init_virtual_nodes()

        if self.apply_prediction_model_weights:
            self.remove_graph_prediction_weights()

        if self.PREDICTION_MODEL_ALGORITHM == 'FENNEL':
            # store a copy of the original graph in the fennel partitioner
            self.partition_algorithm.original_graph = self.G

        return run_metrics