def __init__(self, config): super().__init__(config) # Create an instance from the Model self.logger.info("Loading encoder pretrained in imagenet...") if self.config.pretrained_encoder: pretrained_enc = torch.nn.DataParallel( ERFNet(self.config.imagenet_nclasses)).cuda() pretrained_enc.load_state_dict( torch.load(self.config.pretrained_model_path)['state_dict']) pretrained_enc = next(pretrained_enc.children()).features.encoder else: pretrained_enc = None # define erfNet model self.model = ERF(self.config, pretrained_enc) # Create an instance from the data loader self.data_loader = VOCDataLoader(self.config) # Create instance from the loss self.loss = CrossEntropyLoss(self.config) # Create instance from the optimizer self.optimizer = torch.optim.Adam( self.model.parameters(), lr=self.config.learning_rate, betas=(self.config.betas[0], self.config.betas[1]), eps=self.config.eps, weight_decay=self.config.weight_decay) # Define Scheduler lambda1 = lambda epoch: pow( (1 - ((epoch - 1) / self.config.max_epoch)), 0.9) self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda1) # initialize my counters self.current_epoch = 0 self.current_iteration = 0 self.best_valid_mean_iou = 0 # Check is cuda is available or not self.is_cuda = torch.cuda.is_available() # Construct the flag and make sure that cuda is available self.cuda = self.is_cuda & self.config.cuda if self.cuda: torch.cuda.manual_seed_all(self.config.seed) self.device = torch.device("cuda") torch.cuda.set_device(self.config.gpu_device) self.logger.info("Operation will be on *****GPU-CUDA***** ") print_cuda_statistics() else: self.device = torch.device("cpu") torch.manual_seed(self.config.seed) self.logger.info("Operation will be on *****CPU***** ") self.model = self.model.to(self.device) self.loss = self.loss.to(self.device) # Model Loading from the latest checkpoint if not found start from scratch. self.load_checkpoint(self.config.checkpoint_file) # Tensorboard Writer self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='FCN8s')
def __init__(self, config): super().__init__(config) # Create an instance from the Model self.model = CondenseNet(self.config) # Create an instance from the data loader self.data_loader = Cifar10DataLoader(self.config) # Create instance from the loss self.loss = CrossEntropyLoss() # Create instance from the optimizer self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.config.learning_rate, momentum=float(self.config.momentum), weight_decay=self.config.weight_decay, nesterov=True) # initialize my counters self.current_epoch = 0 self.current_iteration = 0 self.best_valid_acc = 0 # Check is cuda is available or not self.is_cuda = torch.cuda.is_available() # Construct the flag and make sure that cuda is available self.cuda = self.is_cuda & self.config.cuda if self.cuda: self.device = torch.device("cuda") torch.cuda.manual_seed_all(self.config.seed) torch.cuda.set_device(self.config.gpu_device) self.logger.info("Operation will be on *****GPU-CUDA***** ") print_cuda_statistics() else: self.device = torch.device("cpu") torch.manual_seed(self.config.seed) self.logger.info("Operation will be on *****CPU***** ") self.model = self.model.to(self.device) self.loss = self.loss.to(self.device) # Model Loading from the latest checkpoint if not found start from scratch. self.load_checkpoint(self.config.checkpoint_file) # Tensorboard Writer self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='CondenseNet')
class CondenseNetAgent(BaseAgent): def __init__(self, config): super().__init__(config) # Create an instance from the Model self.model = CondenseNet(self.config) # Create an instance from the data loader self.data_loader = Cifar10DataLoader(self.config) # Create instance from the loss self.loss = CrossEntropyLoss() # Create instance from the optimizer self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.config.learning_rate, momentum=float(self.config.momentum), weight_decay=self.config.weight_decay, nesterov=True) # initialize my counters self.current_epoch = 0 self.current_iteration = 0 self.best_valid_acc = 0 # Check is cuda is available or not self.is_cuda = torch.cuda.is_available() # Construct the flag and make sure that cuda is available self.cuda = self.is_cuda & self.config.cuda if self.cuda: self.device = torch.device("cuda") torch.cuda.manual_seed_all(self.config.seed) torch.cuda.set_device(self.config.gpu_device) self.logger.info("Operation will be on *****GPU-CUDA***** ") print_cuda_statistics() else: self.device = torch.device("cpu") torch.manual_seed(self.config.seed) self.logger.info("Operation will be on *****CPU***** ") self.model = self.model.to(self.device) self.loss = self.loss.to(self.device) # Model Loading from the latest checkpoint if not found start from scratch. self.load_checkpoint(self.config.checkpoint_file) # Tensorboard Writer self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='CondenseNet') def save_checkpoint(self, filename='checkpoint.pth.tar', is_best=0): """ Saving the latest checkpoint of the training :param filename: filename which will contain the state :param is_best: flag is it is the best model :return: """ state = { 'epoch': self.current_epoch, 'iteration': self.current_iteration, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), } # Save the state torch.save(state, self.config.checkpoint_dir + filename) # If it is the best copy it to another file 'model_best.pth.tar' if is_best: shutil.copyfile(self.config.checkpoint_dir + filename, self.config.checkpoint_dir + 'model_best.pth.tar') def load_checkpoint(self, filename): filename = self.config.checkpoint_dir + filename try: self.logger.info("Loading checkpoint '{}'".format(filename)) checkpoint = torch.load(filename) self.current_epoch = checkpoint['epoch'] self.current_iteration = checkpoint['iteration'] self.model.load_state_dict(checkpoint['state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer']) self.logger.info( "Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n" .format(self.config.checkpoint_dir, checkpoint['epoch'], checkpoint['iteration'])) except OSError as e: self.logger.info( "No checkpoint exists from '{}'. Skipping...".format( self.config.checkpoint_dir)) self.logger.info("**First time to train**") def run(self): """ This function will the operator :return: """ try: if self.config.mode == 'test': self.validate() else: self.train() except KeyboardInterrupt: self.logger.info("You have entered CTRL+C.. Wait to finalize") def train(self): """ Main training function, with per-epoch model saving """ for epoch in range(self.current_epoch, self.config.max_epoch): self.current_epoch = epoch self.train_one_epoch() valid_acc = self.validate() is_best = valid_acc > self.best_valid_acc if is_best: self.best_valid_acc = valid_acc self.save_checkpoint(is_best=is_best) def train_one_epoch(self): """ One epoch training function """ # Initialize tqdm tqdm_batch = tqdm(self.data_loader.train_loader, total=self.data_loader.train_iterations, desc="Epoch-{}-".format(self.current_epoch)) # Set the model to be in training mode self.model.train() # Initialize your average meters epoch_loss = AverageMeter() top1_acc = AverageMeter() top5_acc = AverageMeter() current_batch = 0 for x, y in tqdm_batch: if self.cuda: x, y = x.cuda(self.config.async_loading), y.cuda( self.config.async_loading) # current iteration over total iterations progress = float( self.current_epoch * self.data_loader.train_iterations + current_batch) / (self.config.max_epoch * self.data_loader.train_iterations) # progress = float(self.current_iteration) / (self.config.max_epoch * self.data_loader.train_iterations) x, y = Variable(x), Variable(y) lr = adjust_learning_rate(self.optimizer, self.current_epoch, self.config, batch=current_batch, nBatch=self.data_loader.train_iterations) # model pred = self.model(x, progress) # loss cur_loss = self.loss(pred, y) if np.isnan(float(cur_loss.item())): raise ValueError('Loss is nan during training...') # optimizer self.optimizer.zero_grad() cur_loss.backward() self.optimizer.step() top1, top5 = cls_accuracy(pred.data, y.data, topk=(1, 5)) epoch_loss.update(cur_loss.item()) top1_acc.update(top1.item(), x.size(0)) top5_acc.update(top5.item(), x.size(0)) self.current_iteration += 1 current_batch += 1 self.summary_writer.add_scalar("epoch/loss", epoch_loss.val, self.current_iteration) self.summary_writer.add_scalar("epoch/accuracy", top1_acc.val, self.current_iteration) tqdm_batch.close() self.logger.info("Training at epoch-" + str(self.current_epoch) + " | " + "loss: " + str(epoch_loss.val) + "- Top1 Acc: " + str(top1_acc.val) + "- Top5 Acc: " + str(top5_acc.val)) def validate(self): """ One epoch validation :return: """ tqdm_batch = tqdm(self.data_loader.valid_loader, total=self.data_loader.valid_iterations, desc="Valiation at -{}-".format(self.current_epoch)) # set the model in training mode self.model.eval() epoch_loss = AverageMeter() top1_acc = AverageMeter() top5_acc = AverageMeter() for x, y in tqdm_batch: if self.cuda: x, y = x.cuda(self.config.async_loading), y.cuda( self.config.async_loading) x, y = Variable(x), Variable(y) # model pred = self.model(x) # loss cur_loss = self.loss(pred, y) if np.isnan(float(cur_loss.item())): raise ValueError('Loss is nan during validation...') top1, top5 = cls_accuracy(pred.data, y.data, topk=(1, 5)) epoch_loss.update(cur_loss.item()) top1_acc.update(top1.item(), x.size(0)) top5_acc.update(top5.item(), x.size(0)) self.logger.info("Validation results at epoch-" + str(self.current_epoch) + " | " + "loss: " + str(epoch_loss.avg) + "- Top1 Acc: " + str(top1_acc.val) + "- Top5 Acc: " + str(top5_acc.val)) tqdm_batch.close() return top1_acc.avg def finalize(self): """ Finalize all the operations of the 2 Main classes of the process the operator and the data loader :return: """ self.logger.info( "Please wait while finalizing the operation.. Thank you") self.save_checkpoint() self.summary_writer.export_scalars_to_json("{}all_scalars.json".format( self.config.summary_dir)) self.summary_writer.close() self.data_loader.finalize()
def __init__(self, config): super().__init__(config) self.config = config self.onlineExpert = ComputeECBSSolution(self.config) self.dataTransformer = DataTransformer(self.config) self.recorder = MonitoringMultiAgentPerformance(self.config) self.model = DecentralPlannerNet(self.config) self.logger.info("Model: \n".format(print(self.model))) # define data_loader self.data_loader = DecentralPlannerDataLoader(config=config) # define loss self.loss = CrossEntropyLoss() self.l1_reg = L1Regularizer(self.model) self.l2_reg = L2Regularizer(self.model) # define optimizers self.optimizer = optim.Adam(self.model.parameters(), lr=self.config.learning_rate, weight_decay=self.config.weight_decay) print(self.config.weight_decay) self.scheduler = optim.lr_scheduler.CosineAnnealingLR( self.optimizer, T_max=self.config.max_epoch, eta_min=1e-6) # for param in self.model.parameters(): # print(param) # for name, param in self.model.state_dict().items(): # print(name, param) # initialize counter self.current_epoch = 0 self.current_iteration = 0 self.current_iteration_validStep = 0 self.rateReachGoal = 0.0 # set cuda flag self.is_cuda = torch.cuda.is_available() if self.is_cuda and not self.config.cuda: self.logger.info( "WARNING: You have a CUDA device, so you should probably enable CUDA" ) self.cuda = self.is_cuda & self.config.cuda # set the manual seed for torch self.manual_seed = self.config.seed if self.cuda: torch.cuda.manual_seed_all(self.manual_seed) self.config.device = torch.device("cuda") torch.cuda.set_device(self.config.gpu_device) self.model = self.model.to(self.config.device) self.loss = self.loss.to(self.config.device) self.logger.info("Program will run on *****GPU-CUDA***** ") print_cuda_statistics() else: self.config.device = torch.device("cpu") torch.manual_seed(self.manual_seed) self.logger.info("Program will run on *****CPU*****\n") # Model Loading from the latest checkpoint if not found start from scratch. if self.config.train_TL or self.config.test_general: self.load_pretrained_checkpoint(self.config.test_epoch, lastest=self.config.lastest_epoch, best=self.config.best_epoch) else: self.load_checkpoint(self.config.test_epoch, lastest=self.config.lastest_epoch, best=self.config.best_epoch) # Summary Writer self.robot = multiRobotSim(self.config) self.switch_toOnlineExpert = False self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='NerualMAPP') self.plot_graph = True self.save_dump_input = False self.dummy_input = None self.dummy_gso = None self.time_record = None
class DecentralPlannerAgentLocalWithOnlineExpert(BaseAgent): def __init__(self, config): super().__init__(config) self.config = config self.onlineExpert = ComputeECBSSolution(self.config) self.dataTransformer = DataTransformer(self.config) self.recorder = MonitoringMultiAgentPerformance(self.config) self.model = DecentralPlannerNet(self.config) self.logger.info("Model: \n".format(print(self.model))) # define data_loader self.data_loader = DecentralPlannerDataLoader(config=config) # define loss self.loss = CrossEntropyLoss() self.l1_reg = L1Regularizer(self.model) self.l2_reg = L2Regularizer(self.model) # define optimizers self.optimizer = optim.Adam(self.model.parameters(), lr=self.config.learning_rate, weight_decay=self.config.weight_decay) print(self.config.weight_decay) self.scheduler = optim.lr_scheduler.CosineAnnealingLR( self.optimizer, T_max=self.config.max_epoch, eta_min=1e-6) # for param in self.model.parameters(): # print(param) # for name, param in self.model.state_dict().items(): # print(name, param) # initialize counter self.current_epoch = 0 self.current_iteration = 0 self.current_iteration_validStep = 0 self.rateReachGoal = 0.0 # set cuda flag self.is_cuda = torch.cuda.is_available() if self.is_cuda and not self.config.cuda: self.logger.info( "WARNING: You have a CUDA device, so you should probably enable CUDA" ) self.cuda = self.is_cuda & self.config.cuda # set the manual seed for torch self.manual_seed = self.config.seed if self.cuda: torch.cuda.manual_seed_all(self.manual_seed) self.config.device = torch.device("cuda") torch.cuda.set_device(self.config.gpu_device) self.model = self.model.to(self.config.device) self.loss = self.loss.to(self.config.device) self.logger.info("Program will run on *****GPU-CUDA***** ") print_cuda_statistics() else: self.config.device = torch.device("cpu") torch.manual_seed(self.manual_seed) self.logger.info("Program will run on *****CPU*****\n") # Model Loading from the latest checkpoint if not found start from scratch. if self.config.train_TL or self.config.test_general: self.load_pretrained_checkpoint(self.config.test_epoch, lastest=self.config.lastest_epoch, best=self.config.best_epoch) else: self.load_checkpoint(self.config.test_epoch, lastest=self.config.lastest_epoch, best=self.config.best_epoch) # Summary Writer self.robot = multiRobotSim(self.config) self.switch_toOnlineExpert = False self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='NerualMAPP') self.plot_graph = True self.save_dump_input = False self.dummy_input = None self.dummy_gso = None self.time_record = None # dummy_input = (torch.zeros(self.config.map_w,self.config.map_w, 3),) # self.summary_writer.add_graph(self.model, dummy_input) def save_checkpoint(self, epoch, is_best=0, lastest=True): """ Checkpoint saver :param file_name: name of the checkpoint file :param is_best: boolean flag to indicate whether current checkpoint's accuracy is the best so far :return: """ if lastest: file_name = "checkpoint.pth.tar" else: file_name = "checkpoint_{:03d}.pth.tar".format(epoch) state = { 'epoch': self.current_epoch + 1, 'iteration': self.current_iteration, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'scheduler_state_dict': self.scheduler.state_dict(), } # Save the state torch.save(state, os.path.join(self.config.checkpoint_dir, file_name)) # If it is the best copy it to another file 'model_best.pth.tar' if is_best: shutil.copyfile( os.path.join(self.config.checkpoint_dir, file_name), os.path.join(self.config.checkpoint_dir, 'model_best.pth.tar')) def load_pretrained_checkpoint(self, epoch, lastest=True, best=False): """ Latest checkpoint loader :param file_name: name of the checkpoint file :return: """ if lastest: file_name = "checkpoint.pth.tar" elif best: file_name = "model_best.pth.tar" else: file_name = "checkpoint_{:03d}.pth.tar".format(epoch) filename = os.path.join(self.config.checkpoint_dir_load, file_name) try: self.logger.info("Loading checkpoint '{}'".format(filename)) # checkpoint = torch.load(filename) checkpoint = torch.load(filename, map_location='cuda:{}'.format( self.config.gpu_device)) self.current_epoch = checkpoint['epoch'] self.current_iteration = checkpoint['iteration'] self.model.load_state_dict(checkpoint['state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer']) self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) self.logger.info( "Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n" .format(self.config.checkpoint_dir_load, checkpoint['epoch'], checkpoint['iteration'])) if self.config.train_TL: param_name_GFL = '*GFL*' param_name_action = '*actions*' assert param_name_GFL != '', 'you must specified the name of the parameters to be re-trained' for model_param_name, model_param_value in self.model.named_parameters( ): # print("---All layers -- \n", model_param_name) if fnmatch(model_param_name, param_name_GFL) or fnmatch( model_param_name, param_name_action ): # and model_param_name.endswith('weight'): # print("---retrain layers -- \n", model_param_name) model_param_value.requires_grad = True else: # print("---freezed layers -- \n", model_param_name) model_param_value.requires_grad = False except OSError as e: self.logger.info( "No checkpoint exists from '{}'. Skipping...".format( self.config.checkpoint_dir)) self.logger.info("**First time to train**") def load_checkpoint(self, epoch, lastest=True, best=False): """ Latest checkpoint loader :param file_name: name of the checkpoint file :return: """ if lastest: file_name = "checkpoint.pth.tar" elif best: file_name = "model_best.pth.tar" else: file_name = "checkpoint_{:03d}.pth.tar".format(epoch) filename = os.path.join(self.config.checkpoint_dir, file_name) try: self.logger.info("Loading checkpoint '{}'".format(filename)) # checkpoint = torch.load(filename) checkpoint = torch.load(filename, map_location='cuda:{}'.format( self.config.gpu_device)) self.current_epoch = checkpoint['epoch'] self.current_iteration = checkpoint['iteration'] self.model.load_state_dict(checkpoint['state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer']) self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) self.logger.info( "Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n" .format(self.config.checkpoint_dir, checkpoint['epoch'], checkpoint['iteration'])) except OSError as e: self.logger.info( "No checkpoint exists from '{}'. Skipping...".format( self.config.checkpoint_dir)) self.logger.info("**First time to train**") def run(self): """ The main operator :return: """ assert self.config.mode in ['train', 'test'] try: if self.config.mode == 'test': print("-------test------------") start = time.process_time() self.test('test') self.time_record = time.process_time() - start # self.test('test_trainingSet') # self.pipeline_onlineExpert(self.current_epoch) else: self.train() except KeyboardInterrupt: self.logger.info("You have entered CTRL+C.. Wait to finalize") def train(self): """ Main training loop :return: """ for epoch in range(self.current_epoch, self.config.max_epoch + 1): # for epoch in range(1, self.config.max_epoch + 1): self.current_epoch = epoch # TODO: Optional 1: del dataloader before train self.train_one_epoch() self.logger.info('Train {} on Epoch {}: Learning Rate: {}]'.format( self.config.exp_name, self.current_epoch, self.scheduler.get_lr())) print('Train {} on Epoch {} Learning Rate: {}'.format( self.config.exp_name, self.current_epoch, self.scheduler.get_lr())) rateReachGoal = 0.0 if self.config.num_agents >= 10: if epoch % self.config.validate_every == 0: rateReachGoal = self.test(self.config.mode) self.switch_toOnlineExpert = True self.test('test_trainingSet') # self.test_step() self.save_checkpoint(epoch, lastest=False) else: if epoch <= 4: rateReachGoal = self.test(self.config.mode) self.switch_toOnlineExpert = True self.test('test_trainingSet') # self.test_step() self.save_checkpoint(epoch, lastest=False) elif epoch % self.config.validate_every == 0: rateReachGoal = self.test(self.config.mode) self.switch_toOnlineExpert = True self.test('test_trainingSet') # self.test_step() self.save_checkpoint(epoch, lastest=False) # pass is_best = rateReachGoal > self.rateReachGoal if is_best: self.rateReachGoal = rateReachGoal self.save_checkpoint(epoch, is_best=is_best, lastest=True) self.scheduler.step() # TODO: Optional 2: del dataloader after train self.excuation_onlineExport(epoch) def excuation_onlineExport(self, epoch): if epoch >= self.config.Start_onlineExpert: if self.config.num_agents >= 10: if epoch % self.config.validate_every == 0: self.pipeline_onlineExpert(epoch) else: if epoch <= 4: self.pipeline_onlineExpert(epoch) elif epoch % self.config.validate_every == 0: self.pipeline_onlineExpert(epoch) def pipeline_onlineExpert(self, epoch): # TODO: del dataloader # create dataloader self.onlineExpert.set_up() self.onlineExpert.computeSolution() self.dataTransformer.set_up(epoch) self.dataTransformer.solutionTransformer() del self.data_loader self.data_loader = DecentralPlannerDataLoader(config=self.config) def train_one_epoch(self): """ One epoch of training :return: """ # Set the model to be in training mode self.model.train() # for param in self.model.parameters(): # print(param.requires_grad) # for batch_idx, (input, target, GSO) in enumerate(self.data_loader.train_loader): for batch_idx, (batch_input, batch_target, _, batch_GSO, _) in enumerate(self.data_loader.train_loader): inputGPU = batch_input.to(self.config.device) gsoGPU = batch_GSO.to(self.config.device) # gsoGPU = gsoGPU.unsqueeze(0) targetGPU = batch_target.to(self.config.device) batch_targetGPU = targetGPU.permute(1, 0, 2) self.optimizer.zero_grad() # loss loss = 0 # model self.model.addGSO(gsoGPU) predict = self.model(inputGPU) for id_agent in range(self.config.num_agents): # for output, target in zip(predict, target): batch_predict_currentAgent = predict[id_agent][:] batch_target_currentAgent = batch_targetGPU[id_agent][:][:] loss = loss + self.loss( batch_predict_currentAgent, torch.max(batch_target_currentAgent, 1)[1]) # print(loss) loss = loss / self.config.num_agents loss.backward() # for param in self.model.parameters(): # print(param.grad) self.optimizer.step() if batch_idx % self.config.log_interval == 0: self.logger.info( 'Train {} on Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format( self.config.exp_name, self.current_epoch, batch_idx * len(inputGPU), len(self.data_loader.train_loader.dataset), 100. * batch_idx / len(self.data_loader.train_loader), loss.item())) self.current_iteration += 1 # print(loss) log_loss = loss.item() self.summary_writer.add_scalar("iteration/loss", log_loss, self.current_iteration) def test_step(self): """ One epoch of testing the accuracy of decision-making of each step :return: """ # Set the model to be in training mode self.model.eval() log_loss_validStep = [] for batch_idx, (batch_input, batch_target, _, batch_GSO, _) in enumerate(self.data_loader.validStep_loader): inputGPU = batch_input.to(self.config.device) gsoGPU = batch_GSO.to(self.config.device) # gsoGPU = gsoGPU.unsqueeze(0) targetGPU = batch_target.to(self.config.device) batch_targetGPU = targetGPU.permute(1, 0, 2) self.optimizer.zero_grad() # loss loss_validStep = 0 # model self.model.addGSO(gsoGPU) predict = self.model(inputGPU) for id_agent in range(self.config.num_agents): # for output, target in zip(predict, target): batch_predict_currentAgent = predict[id_agent][:] batch_target_currentAgent = batch_targetGPU[id_agent][:][:] loss_validStep = loss_validStep + self.loss( batch_predict_currentAgent, torch.max(batch_target_currentAgent, 1)[1]) # print(loss) loss_validStep = loss_validStep / self.config.num_agents if batch_idx % self.config.log_interval == 0: self.logger.info( 'ValidStep {} on Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}' .format( self.config.exp_name, self.current_epoch, batch_idx * len(inputGPU), len(self.data_loader.validStep_loader.dataset), 100. * batch_idx / len(self.data_loader.validStep_loader), loss_validStep.item())) log_loss_validStep.append(loss_validStep.item()) # self.current_iteration_validStep += 1 # self.summary_writer.add_scalar("iteration/loss_validStep", loss_validStep.item(), self.current_iteration_validStep) # print(loss) avg_loss = sum(log_loss_validStep) / len(log_loss_validStep) self.summary_writer.add_scalar("epoch/loss_validStep", avg_loss, self.current_epoch) def test(self, mode): """ One cycle of model validation :return: """ self.model.eval() if mode == 'test': dataloader = self.data_loader.test_loader label = 'test' elif mode == 'test_trainingSet': dataloader = self.data_loader.test_trainingSet_loader label = 'test_training' if self.switch_toOnlineExpert: self.robot.createfolder_failure_cases() else: dataloader = self.data_loader.valid_loader label = 'valid' size_dataset = dataloader.dataset.data_size self.logger.info('\n{} set on {} in {} testing set \n'.format( label, self.config.exp_name, size_dataset)) self.recorder.reset() # maxstep = self.robot.getMaxstep() with torch.no_grad(): for input, target, makespan, _, tensor_map in dataloader: inputGPU = input.to(self.config.device) targetGPU = target.to(self.config.device) log_result = self.mutliAgent_ActionPolicy( inputGPU, targetGPU, makespan, tensor_map, self.recorder.count_validset, mode) self.recorder.update(self.robot.getMaxstep(), log_result) self.summary_writer = self.recorder.summary(label, self.summary_writer, self.current_epoch) self.logger.info( 'Accurracy(reachGoalnoCollision): {} \n ' 'DeteriorationRate(MakeSpan): {} \n ' 'DeteriorationRate(FlowTime): {} \n ' 'Rate(collisionPredictedinLoop): {} \n ' 'Rate(FailedReachGoalbyCollisionShielding): {} \n '.format( round(self.recorder.rateReachGoal, 4), round(self.recorder.avg_rate_deltaMP, 4), round(self.recorder.avg_rate_deltaFT, 4), round(self.recorder.rateCollisionPredictedinLoop, 4), round(self.recorder.rateFailedReachGoalSH, 4), )) # if self.config.mode == 'train' and self.plot_graph: # self.summary_writer.add_graph(self.model,None) # self.plot_graph = False return self.recorder.rateReachGoal def mutliAgent_ActionPolicy(self, input, load_target, makespanTarget, tensor_map, ID_dataset, mode): self.robot.setup(input, load_target, makespanTarget, tensor_map, ID_dataset) maxstep = self.robot.getMaxstep() allReachGoal = False noReachGoalbyCollsionShielding = False check_collisionFreeSol = False check_CollisionHappenedinLoop = False check_CollisionPredictedinLoop = False findOptimalSolution = False compare_makespan, compare_flowtime = self.robot.getOptimalityMetrics() currentStep = 0 Case_start = time.process_time() Time_cases_ForwardPass = [] for step in range(maxstep): currentStep = step + 1 currentState = self.robot.getCurrentState() currentStateGPU = currentState.to(self.config.device) gso = self.robot.getGSO(step) gsoGPU = gso.to(self.config.device) self.model.addGSO(gsoGPU) # self.model.addGSO(gsoGPU.unsqueeze(0)) step_start = time.process_time() actionVec_predict = self.model(currentStateGPU) time_ForwardPass = time.process_time() - step_start Time_cases_ForwardPass.append(time_ForwardPass) allReachGoal, check_moveCollision, check_predictCollision = self.robot.move( actionVec_predict, currentStep) if check_moveCollision: check_CollisionHappenedinLoop = True if check_predictCollision: check_CollisionPredictedinLoop = True if allReachGoal: # findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality() # print("### Case - {} within maxstep - RealGoal: {} ~~~~~~~~~~~~~~~~~~~~~~".format(ID_dataset, allReachGoal)) break elif currentStep >= (maxstep): # print("### Case - {} exceed maxstep - RealGoal: {} - check_moveCollision: {} - check_predictCollision: {}".format(ID_dataset, allReachGoal, check_CollisionHappenedinLoop, check_CollisionPredictedinLoop)) break num_agents_reachgoal = self.robot.count_numAgents_ReachGoal() store_GSO, store_communication_radius = self.robot.count_GSO_communcationRadius( currentStep) if allReachGoal and not check_CollisionHappenedinLoop: check_collisionFreeSol = True noReachGoalbyCollsionShielding = False findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality( True) if self.config.log_anime and self.config.mode == 'test': self.robot.save_success_cases('success') if currentStep >= (maxstep): findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality( False) if mode == 'test_trainingSet' and self.switch_toOnlineExpert: self.robot.save_failure_cases() if currentStep >= ( maxstep ) and not allReachGoal and check_CollisionPredictedinLoop and not check_CollisionHappenedinLoop: findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality( False) # print("### Case - {} -Step{} exceed maxstep({})- ReachGoal: {} due to CollsionShielding \n".format(ID_dataset,currentStep,maxstep, allReachGoal)) noReachGoalbyCollsionShielding = True if self.config.log_anime and self.config.mode == 'test': self.robot.save_success_cases('failure') time_record = time.process_time() - Case_start if self.config.mode == 'test': exp_status = "################## {} - End of loop ################## ".format( self.config.exp_name) case_status = "####### Case{} \t Computation time:{} \t Step{}/{}\t- AllReachGoal-{}\n".format( ID_dataset, time_record, currentStep, maxstep, allReachGoal) self.logger.info('{} \n {}'.format(exp_status, case_status)) # if self.config.mode == 'test': # self.robot.draw(ID_dataset) # return [allReachGoal, noReachGoalbyCollsionShielding, findOptimalSolution, check_collisionFreeSol, check_CollisionPredictedinLoop, makespanPredict, makespanTarget, flowtimePredict,flowtimeTarget,num_agents_reachgoal] return allReachGoal, noReachGoalbyCollsionShielding, findOptimalSolution, check_collisionFreeSol, check_CollisionPredictedinLoop, compare_makespan, compare_flowtime, num_agents_reachgoal, store_GSO, store_communication_radius, time_record, Time_cases_ForwardPass def finalize(self): """ Finalizes all the operations of the 2 Main classes of the process, the operator and the data loader :return: """ if self.config.mode == 'train': print(self.model) print("Experiment on {} finished.".format(self.config.exp_name)) print("Please wait while finalizing the operation.. Thank you") # self.save_checkpoint() self.summary_writer.export_scalars_to_json("{}all_scalars.json".format( self.config.summary_dir)) self.summary_writer.close() self.data_loader.finalize() if self.config.mode == 'test': print("################## End of testing ################## ") print("Computation time:\t{} ".format(self.time_record))
class DecentralPlannerAgentLocal(BaseAgent): def __init__(self, config): super().__init__(config) self.config = config self.recorder = MonitoringMultiAgentPerformance(self.config) self.model = DecentralPlannerNet(self.config, config.feature_noise_std, config.sybil_attack_count) self.logger.info("Model: \n".format(print(self.model))) # Add additional noise model parameters to config self.map_noise_prob = config.map_noise_prob self.map_shift_units = config.map_shift_units self.move_noise_std = config.move_noise_std self.comm_dropout_param = config.comm_dropout_param # Add additonal attack model parameters to config self.rogue_agent_count = config.rogue_agent_count # define data_loader self.data_loader = DecentralPlannerDataLoader(config=config) # define loss self.loss = CrossEntropyLoss() self.l1_reg = L1Regularizer(self.model) self.l2_reg = L2Regularizer(self.model) # define optimizers self.optimizer = optim.Adam(self.model.parameters(), lr=self.config.learning_rate, weight_decay=self.config.weight_decay) print(self.config.weight_decay) self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=self.config.max_epoch, eta_min=1e-6) # for param in self.model.parameters(): # print(param) # for name, param in self.model.state_dict().items(): # print(name, param) # initialize counter self.current_epoch = 0 self.current_iteration = 0 self.current_iteration_validStep = 0 self.rateReachGoal = 0.0 # set cuda flag self.is_cuda = torch.cuda.is_available() if self.is_cuda and not self.config.cuda: self.logger.info("WARNING: You have a CUDA device, so you should probably enable CUDA") self.cuda = self.is_cuda & self.config.cuda # set the manual seed for torch self.manual_seed = self.config.seed if self.cuda: torch.cuda.manual_seed_all(self.manual_seed) self.config.device = torch.device("cuda") torch.cuda.set_device(self.config.gpu_device) self.model = self.model.to(self.config.device) self.loss = self.loss.to(self.config.device) self.logger.info("Program will run on *****GPU-CUDA***** ") print_cuda_statistics() else: self.config.device = torch.device("cpu") torch.manual_seed(self.manual_seed) self.logger.info("Program will run on *****CPU*****\n") # Model Loading from the latest checkpoint if not found start from scratch. if self.config.train_TL or self.config.test_general: self.load_pretrained_checkpoint(self.config.test_epoch, lastest=self.config.lastest_epoch, best=self.config.best_epoch) else: self.load_checkpoint(self.config.test_epoch, lastest=self.config.lastest_epoch, best=self.config.best_epoch) # Summary Writer self.robot = multiRobotSim(self.config) self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='NerualMAPP') self.plot_graph = True self.save_dump_input = False self.dummy_input = None self.dummy_gso = None self.time_record = None # dummy_input = (torch.zeros(self.config.map_w,self.config.map_w, 3),) # self.summary_writer.add_graph(self.model, dummy_input) self.results_file = open(self.config.data_root + '/results.txt', 'a+') def save_checkpoint(self, epoch, is_best=0, lastest=True): """ Checkpoint saver :param file_name: name of the checkpoint file :param is_best: boolean flag to indicate whether current checkpoint's accuracy is the best so far :return: """ if lastest: file_name = "checkpoint.pth.tar" else: file_name = "checkpoint_{:03d}.pth.tar".format(epoch) state = { 'epoch': self.current_epoch + 1, 'iteration': self.current_iteration, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'scheduler_state_dict': self.scheduler.state_dict(), } # Save the state torch.save(state, os.path.join(self.config.checkpoint_dir, file_name)) # If it is the best copy it to another file 'model_best.pth.tar' if is_best: shutil.copyfile(os.path.join(self.config.checkpoint_dir, file_name), os.path.join(self.config.checkpoint_dir, 'model_best.pth.tar')) def load_pretrained_checkpoint(self, epoch, lastest=True, best=False): """ Latest checkpoint loader :param file_name: name of the checkpoint file :return: """ if lastest: file_name = "checkpoint.pth.tar" elif best: file_name = "model_best.pth.tar" else: file_name = "checkpoint_{:03d}.pth.tar".format(epoch) filename = os.path.join(self.config.checkpoint_dir_load, file_name) try: self.logger.info("Loading checkpoint '{}'".format(filename)) checkpoint = torch.load(filename, map_location=torch.device('cpu')) #checkpoint = torch.load(filename, map_location='cuda:{}'.format(self.config.gpu_device)) self.current_epoch = checkpoint['epoch'] self.current_iteration = checkpoint['iteration'] self.model.load_state_dict(checkpoint['state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer']) self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) self.logger.info("Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n" .format(self.config.checkpoint_dir_load, checkpoint['epoch'], checkpoint['iteration'])) if self.config.train_TL: param_name_GFL = '*GFL*' param_name_action = '*actions*' assert param_name_GFL != '', 'you must specified the name of the parameters to be re-trained' for model_param_name, model_param_value in self.model.named_parameters(): # print("---All layers -- \n", model_param_name) if fnmatch(model_param_name, param_name_GFL) or fnmatch(model_param_name, param_name_action): # and model_param_name.endswith('weight'): # print("---retrain layers -- \n", model_param_name) model_param_value.requires_grad = True else: # print("---freezed layers -- \n", model_param_name) model_param_value.requires_grad = False except OSError as e: self.logger.info("No checkpoint exists from '{}'. Skipping...".format(self.config.checkpoint_dir)) self.logger.info("**First time to train**") def load_checkpoint(self, epoch, lastest=True, best=False): """ Latest checkpoint loader :param file_name: name of the checkpoint file :return: """ if lastest: file_name = "checkpoint.pth.tar" elif best: file_name = "model_best.pth.tar" else: file_name = "checkpoint_{:03d}.pth.tar".format(epoch) filename = os.path.join(self.config.checkpoint_dir, file_name) try: self.logger.info("Loading checkpoint '{}'".format(filename)) checkpoint = torch.load(filename, map_location=torch.device('cpu')) #checkpoint = torch.load(filename, map_location='cuda:{}'.format(self.config.gpu_device)) self.current_epoch = checkpoint['epoch'] self.current_iteration = checkpoint['iteration'] self.model.load_state_dict(checkpoint['state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer']) self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) self.logger.info("Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n" .format(self.config.checkpoint_dir, checkpoint['epoch'], checkpoint['iteration'])) except OSError as e: self.logger.info("No checkpoint exists from '{}'. Skipping...".format(self.config.checkpoint_dir)) self.logger.info("**First time to train**") def run(self): """ The main operator :return: """ assert self.config.mode in ['train', 'test'] try: if self.config.mode == 'test': print("-------test------------") start = time.process_time() self.test('test') self.time_record = time.process_time()-start # self.test('test_trainingSet') else: self.train() except KeyboardInterrupt: self.logger.info("You have entered CTRL+C.. Wait to finalize") def train(self): """ Main training loop :return: """ for epoch in range(self.current_epoch, self.config.max_epoch + 1): # for epoch in range(1, self.config.max_epoch + 1): self.current_epoch = epoch self.train_one_epoch() # self.train_one_epoch_BPTT() self.logger.info('Train {} on Epoch {}: Learning Rate: {}]'.format(self.config.exp_name, self.current_epoch, self.scheduler.get_lr())) print('Train {} on Epoch {} Learning Rate: {}'.format(self.config.exp_name, self.current_epoch, self.scheduler.get_lr())) rateReachGoal = 0.0 if self.config.num_agents >= 10: if epoch % self.config.validate_every == 0: rateReachGoal = self.test(self.config.mode) self.test('test_trainingSet') # self.test_step() self.save_checkpoint(epoch, lastest=False) else: if epoch <= 4: rateReachGoal = self.test(self.config.mode) self.test('test_trainingSet') # self.test_step() self.save_checkpoint(epoch, lastest=False) elif epoch % self.config.validate_every == 0: rateReachGoal = self.test(self.config.mode) self.test('test_trainingSet') # self.test_step() self.save_checkpoint(epoch, lastest=False) # pass is_best = rateReachGoal > self.rateReachGoal if is_best: self.rateReachGoal = rateReachGoal self.save_checkpoint(epoch, is_best=is_best, lastest=True) self.scheduler.step() def train_one_epoch(self): """ One epoch of training :return: """ # Set the model to be in training mode self.model.train() # for param in self.model.parameters(): # print(param.requires_grad) # for batch_idx, (input, target, GSO) in enumerate(self.data_loader.train_loader): for batch_idx, (batch_input, batch_target, _, batch_GSO, _) in enumerate(self.data_loader.train_loader): inputGPU = batch_input.to(self.config.device) gsoGPU = batch_GSO.to(self.config.device) # gsoGPU = gsoGPU.unsqueeze(0) targetGPU = batch_target.to(self.config.device) batch_targetGPU = targetGPU.permute(1,0,2) self.optimizer.zero_grad() # loss loss = 0 # model self.model.addGSO(gsoGPU) predict = self.model(inputGPU) for id_agent in range(self.config.num_agents): # for output, target in zip(predict, target): batch_predict_currentAgent = predict[id_agent][:] batch_target_currentAgent = batch_targetGPU[id_agent][:][:] loss = loss + self.loss(batch_predict_currentAgent, torch.max(batch_target_currentAgent, 1)[1]) # print(loss) loss = loss/self.config.num_agents loss.backward() # for param in self.model.parameters(): # print(param.grad) self.optimizer.step() if batch_idx % self.config.log_interval == 0: self.logger.info('Train {} on Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(self.config.exp_name, self.current_epoch, batch_idx * len(inputGPU), len(self.data_loader.train_loader.dataset), 100. * batch_idx / len(self.data_loader.train_loader), loss.item())) self.current_iteration += 1 # print(loss) log_loss = loss.item() self.summary_writer.add_scalar("iteration/loss", log_loss, self.current_iteration) def train_one_epoch_BPTT(self): """ One epoch of training :return: """ # Set the model to be in training mode self.model.train() # seq_length = 5 seq_length = 10 # for batch_idx, (input, target, GSO) in enumerate(self.data_loader.train_loader): # for batch_idx, (batch_input, batch_GSO, batch_target) in enumerate(self.data_loader.train_loader): for batch_idx, (batch_input, batch_target, list_makespan, batch_GSO, _) in enumerate(self.data_loader.train_loader): batch_makespan = max(list_makespan) batch_size = batch_input.shape[1] # print(mask_makespan) inputGPU = batch_input.to(self.config.device) gsoGPU = batch_GSO.to(self.config.device) targetGPU = batch_target.to(self.config.device) # for step in range(batch_makespan): # self.model.initialize_hidden(batch_size) log_loss = [] for id_seq in range(0, batch_makespan, seq_length): # solution # 2 if id_seq == 0: self.model.initialize_hidden(batch_size) else: self.model.detach_hidden() if id_seq + seq_length + 1 >= batch_makespan: id_seq_end = batch_makespan self.retain_graph = True else: id_seq_end = id_seq + seq_length self.retain_graph = True # loss loss = 0 # backpropagate after aggregate loss within certain number of step (5) instead of full makespan for step in range(id_seq, id_seq_end): # Back Propagation through time (BPTT) step_inputGPU = inputGPU[step][:] step_targetGPU = targetGPU[step][:] step_gsoGPU = gsoGPU[step][:] step_targetGPU = step_targetGPU.permute(1, 0, 2) self.optimizer.zero_grad() # model self.model.addGSO(step_gsoGPU) step_predict = self.model(step_inputGPU) for id_agent in range(self.config.num_agents): # for output, target in zip(predict, target): batch_predict_currentAgent = step_predict[id_agent][:] batch_target_currentAgent = step_targetGPU[id_agent][:] loss = loss + self.loss(batch_predict_currentAgent, torch.max(batch_target_currentAgent, 1)[1]) / self.config.num_agents # print(loss) # optimizer loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5) # solution # 1 # loss.backward(retain_graph=self.retain_graph) #https://github.com/pytorch/examples/blob/e11e0796fc02cc2cd5b6ec2ad7cea21f77e25402/word_language_model/main.py#L155 # torch.nn.utils.clip_grad_norm(model.parameters(), 0.25)#args.clip) # for p in model.parameters(): # p.data.add_(-lr, p.grad.data) # for param in self.model.parameters(): # print(param.grad) self.optimizer.step() log_loss.append(loss.item()) avg_loss = sum(log_loss) / len(log_loss) if batch_idx % self.config.log_interval == 0: self.logger.info('Train {} on Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(self.config.exp_name, self.current_epoch, batch_idx * batch_size, len(self.data_loader.train_loader.dataset), 100. * batch_idx / len(self.data_loader.train_loader), avg_loss)) self.current_iteration += 1 # print(loss) # log_loss = loss.item() self.summary_writer.add_scalar("iteration/loss", avg_loss, self.current_iteration) def test_step(self): """ One epoch of testing the accuracy of decision-making of each step :return: """ # Set the model to be in training mode self.model.eval() log_loss_validStep = [] for batch_idx, (batch_input, batch_target, _, batch_GSO, _) in enumerate(self.data_loader.validStep_loader): inputGPU = batch_input.to(self.config.device) gsoGPU = batch_GSO.to(self.config.device) # gsoGPU = gsoGPU.unsqueeze(0) targetGPU = batch_target.to(self.config.device) batch_targetGPU = targetGPU.permute(1, 0, 2) self.optimizer.zero_grad() # loss loss_validStep = 0 # model self.model.addGSO(gsoGPU) predict = self.model(inputGPU) for id_agent in range(self.config.num_agents): # for output, target in zip(predict, target): batch_predict_currentAgent = predict[id_agent][:] batch_target_currentAgent = batch_targetGPU[id_agent][:][:] loss_validStep = loss_validStep + self.loss(batch_predict_currentAgent, torch.max(batch_target_currentAgent, 1)[1]) # print(loss) loss_validStep = loss_validStep/self.config.num_agents if batch_idx % self.config.log_interval == 0: self.logger.info('ValidStep {} on Epoch {}: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(self.config.exp_name, self.current_epoch, batch_idx * len(inputGPU), len(self.data_loader.validStep_loader.dataset), 100. * batch_idx / len(self.data_loader.validStep_loader), loss_validStep.item())) log_loss_validStep.append(loss_validStep.item()) # self.current_iteration_validStep += 1 # self.summary_writer.add_scalar("iteration/loss_validStep", loss_validStep.item(), self.current_iteration_validStep) # print(loss) avg_loss = sum(log_loss_validStep)/len(log_loss_validStep) self.summary_writer.add_scalar("epoch/loss_validStep", avg_loss, self.current_epoch) def test(self, mode): """ One cycle of model validation :return: """ self.model.eval() if mode == 'test': dataloader = self.data_loader.test_loader label = 'test' elif mode == 'test_trainingSet': dataloader = self.data_loader.test_trainingSet_loader label = 'test_training' else: dataloader = self.data_loader.valid_loader label = 'valid' self.logger.info('\n{} set on {} \n'.format(label, self.config.exp_name)) self.recorder.reset() # maxstep = self.robot.getMaxstep() with torch.no_grad(): for input, target, makespan, _, tensor_map in dataloader: inputGPU = input.to(self.config.device) targetGPU = target.to(self.config.device) log_result = self.mutliAgent_ActionPolicy(inputGPU, targetGPU, makespan, tensor_map, self.recorder.count_validset) self.recorder.update(self.robot.getMaxstep(), log_result) self.summary_writer = self.recorder.summary(label, self.summary_writer, self.current_epoch) results = ('Accurracy(reachGoalnoCollision): {} \n ' 'DeteriorationRate(MakeSpan): {} \n ' 'DeteriorationRate(FlowTime): {} \n ' 'Rate(collisionPredictedinLoop): {} \n ' 'Rate(FailedReachGoalbyCollisionShielding): {} \n '.format( round(self.recorder.rateReachGoal, 4), round(self.recorder.avg_rate_deltaMP, 4), round(self.recorder.avg_rate_deltaFT, 4), round(self.recorder.rateCollisionPredictedinLoop, 4), round(self.recorder.rateFailedReachGoalSH, 4), )) self.logger.info(results) self.results_file.write('K={}, no OE\n'.format(self.config.nGraphFilterTaps)) self.results_file.write(results) if self.recorder.avg_NonRogueFT: nonRogueOut = 'NonRogueFT: {}\n'.format(round(self.recorder.avg_NonRogueFT,4)) self.results_file.write(nonRogueOut) self.logger.info(nonRogueOut) # if self.config.mode == 'train' and self.plot_graph: # self.summary_writer.add_graph(self.model,None) # self.plot_graph = False return self.recorder.rateReachGoal def mutliAgent_ActionPolicy(self, input, load_target, makespanTarget, tensor_map, ID_dataset): t0_setup = time.process_time() self.robot.setup(input, load_target, makespanTarget, tensor_map, ID_dataset) deltaT_setup = time.process_time()-t0_setup # print(" Computation time \t-[Step up]-\t\t :{} ".format(deltaT_setup)) maxstep = self.robot.getMaxstep() allReachGoal = False noReachGoalbyCollsionShielding = False check_collisionFreeSol = False check_CollisionHappenedinLoop = False check_CollisionPredictedinLoop = False findOptimalSolution = False compare_makespan, compare_flowtime = self.robot.getOptimalityMetrics() currentStep = 0 Case_start = time.process_time() Time_cases_ForwardPass = [] for step in range(maxstep): currentStep = step + 1 t0_getState = time.process_time() currentState = self.robot.getCurrentState() currentStateGPU = currentState.to(self.config.device) deltaT_getState = time.process_time() - t0_getState #print(" Computation time \t-[getState]-\t\t :{} ".format(deltaT_getState)) t0_getGSO = time.process_time() gso = self.robot.getGSO(step) deltaT_getGSO = time.process_time() - t0_getGSO #print(" Computation time \t-[getGSO]-\t\t :{} ".format(deltaT_getGSO)) gsoGPU = gso.to(self.config.device) pos_agents = self.robot.get_PosAgents() self.model.addGSO(gsoGPU) # model sensor failure by randomly flipping bits of # map (which consists of 0s to indicate no object and 1s to indicate object) if self.map_noise_prob: bit_flip_mask = (torch.rand(currentStateGPU.shape) < self.map_noise_prob).to(self.config.device) # bits in mask each = 1 with probability specified # so xoring with this mask flips bits in map with probability specified currentStateGPU = torch.logical_xor(currentStateGPU, bit_flip_mask).float().to(self.config.device) # model miscalibration of sensor - shift map bits up by some number of units if self.map_shift_units: shifted_maps = currentStateGPU[:,:,:,-(currentStateGPU.shape[3] - self.map_shift_units):,:] # zero pad the missing rows of the field of view maps zero_pad_size = list(currentStateGPU.shape) zero_pad_size[3] = self.map_shift_units currentStateGPU = torch.cat((shifted_maps, torch.zeros(tuple(zero_pad_size), dtype = torch.float)), dim=3).to(self.config.device) if self.comm_dropout_param: # noise model: # create mask to drop out each message between robots i,j with probability # max(1,theta * distance(i,j)/(communication radius)) distances = squareform(pdist(self.robot.get_PosAgents()[0])) loss_prob = torch.from_numpy(self.comm_dropout_param/self.robot.communicationRadius * distances).to(self.config.device) loss_prob = torch.reshape(loss_prob, (1,1,loss_prob.shape[0], loss_prob.shape[1])) comm_loss_mask = (torch.rand(loss_prob.shape) > loss_prob).to(self.config.device) else: comm_loss_mask = None step_start = time.process_time() actionVec_predict = self.model(currentStateGPU, comm_loss_mask) # softmax of actionVec_predict is used to determine probabilities of each of the 5 moves # (so at test time, the argmax of actionVec_predict is taken as the move). # To simulate control errors (e.g. motors not properly responding to commands, breaking, wheels slipping, etc) # we add gaussian noise to actionVec_predict if self.move_noise_std: for av in actionVec_predict: av += torch.normal(0.0,self.move_noise_std,list(av.shape)) time_ForwardPass = time.process_time() - step_start step_move = time.process_time() allReachGoal, check_moveCollision, check_predictCollision = self.robot.move(actionVec_predict, currentStep, self.rogue_agent_count) deltaT_move = time.process_time() - step_move #print(" Computation time \t-[move]-\t\t :{} ".format(deltaT_move)) #print(" Computation time \t-[loopStep]-\t\t :{}\n ".format(time.process_time() - t0_getState)) Time_cases_ForwardPass.append([deltaT_setup, deltaT_getState, deltaT_getGSO, time_ForwardPass, deltaT_move]) if check_moveCollision: check_CollisionHappenedinLoop = True if check_predictCollision: check_CollisionPredictedinLoop = True if allReachGoal: # findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality() # print("### Case - {} within maxstep - RealGoal: {} ~~~~~~~~~~~~~~~~~~~~~~".format(ID_dataset, allReachGoal)) break elif currentStep >= (maxstep): # print("### Case - {} exceed maxstep - RealGoal: {} - check_moveCollision: {} - check_predictCollision: {}".format(ID_dataset, allReachGoal, check_CollisionHappenedinLoop, check_CollisionPredictedinLoop)) break num_agents_reachgoal = self.robot.count_numAgents_ReachGoal() store_GSO, store_communication_radius = self.robot.count_GSO_communcationRadius(currentStep) if allReachGoal and not check_CollisionHappenedinLoop: check_collisionFreeSol = True noReachGoalbyCollsionShielding = False findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality(True) if self.config.log_anime and self.config.mode == 'test': self.robot.save_success_cases('success') if currentStep >= (maxstep): findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality(False) if currentStep >= (maxstep) and not allReachGoal and check_CollisionPredictedinLoop and not check_CollisionHappenedinLoop: findOptimalSolution, compare_makespan, compare_flowtime = self.robot.checkOptimality(False) # print("### Case - {} -Step{} exceed maxstep({})- ReachGoal: {} due to CollsionShielding \n".format(ID_dataset,currentStep,maxstep, allReachGoal)) noReachGoalbyCollsionShielding = True if self.config.log_anime and self.config.mode == 'test': self.robot.save_success_cases('failure') time_record = time.process_time() - Case_start if self.config.mode == 'test': exp_status = "################## {} - End of loop ################## ".format(self.config.exp_name) case_status = "####### Case{} \t Computation time:{} \t Step{}/{}\t- AllReachGoal-{}\n".format(ID_dataset, time_record, currentStep, maxstep, allReachGoal) self.logger.info('{} \n {}'.format(exp_status, case_status)) # if self.config.mode == 'test': # self.robot.draw(ID_dataset) # elif self.config.mode == 'train' and self.current_epoch == self.config.max_epoch: # # self.robot.draw(ID_dataset) # pass # return [allReachGoal, noReachGoalbyCollsionShielding, findOptimalSolution, check_collisionFreeSol, check_CollisionPredictedinLoop, makespanPredict, makespanTarget, flowtimePredict,flowtimeTarget,num_agents_reachgoal] return allReachGoal, noReachGoalbyCollsionShielding, findOptimalSolution, check_collisionFreeSol, check_CollisionPredictedinLoop, compare_makespan, compare_flowtime, num_agents_reachgoal, store_GSO, store_communication_radius, time_record,Time_cases_ForwardPass, self.robot.nonRogueFlowtimePredict def finalize(self): """ Finalizes all the operations of the 2 Main classes of the process, the operator and the data loader :return: """ if self.config.mode == 'train': print(self.model) print("Experiment on {} finished.".format(self.config.exp_name)) print("Please wait while finalizing the operation.. Thank you") # self.save_checkpoint() self.summary_writer.export_scalars_to_json("{}all_scalars.json".format(self.config.summary_dir)) self.summary_writer.close() self.data_loader.finalize() if self.config.mode == 'test': print("################## End of testing ################## ") time = "Computation time:{}\n".format(self.time_record) print(time) self.results_file.write(time) self.results_file.close()
class ERFNetAgent(BaseAgent): """ This class will be responsible for handling the whole process of our architecture. """ def __init__(self, config): super().__init__(config) # Create an instance from the Model self.logger.info("Loading encoder pretrained in imagenet...") if self.config.pretrained_encoder: pretrained_enc = torch.nn.DataParallel( ERFNet(self.config.imagenet_nclasses)).cuda() pretrained_enc.load_state_dict( torch.load(self.config.pretrained_model_path)['state_dict']) pretrained_enc = next(pretrained_enc.children()).features.encoder else: pretrained_enc = None # define erfNet model self.model = ERF(self.config, pretrained_enc) # Create an instance from the data loader #self.data_loader = VOCDataLoader(self.config) self.data_loader = CityscapesDataLoader(self.config) ''' net_h, net_w = 448, 896 augment = Compose([RandomHorizontallyFlip(), RandomSized((0.625, 0.75)), RandomRotate(6), RandomCrop((net_h, net_w))]) local_path = "./data/Cityscapes" self.data_loader = CityscapesLoader(local_path, split="test", is_transform=True, augmentations=None, gt="gtFine") ''' ######################################## self.color_transform = Colorize(self.config.num_classes) self.image_transform = ToPILImage() # Create instance from the loss self.loss = CrossEntropyLoss(self.config) # Create instance from the optimizer self.optimizer = torch.optim.Adam( self.model.parameters(), lr=self.config.learning_rate, betas=(self.config.betas[0], self.config.betas[1]), eps=self.config.eps, weight_decay=self.config.weight_decay) # Define Scheduler lambda1 = lambda epoch: pow( (1 - ((epoch - 1) / self.config.max_epoch)), 0.9) self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda1) # initialize my counters self.current_epoch = 0 self.current_iteration = 0 self.best_valid_mean_iou = 0 # Check is cuda is available or not self.is_cuda = torch.cuda.is_available() # Construct the flag and make sure that cuda is available self.cuda = self.is_cuda & self.config.cuda if self.cuda: torch.cuda.manual_seed_all(self.config.seed) self.device = torch.device("cuda") torch.cuda.set_device(self.config.gpu_device) self.logger.info("Operation will be on *****GPU-CUDA***** ") print_cuda_statistics() else: self.device = torch.device("cpu") torch.manual_seed(self.config.seed) self.logger.info("Operation will be on *****CPU***** ") self.model = self.model.to(self.device) self.loss = self.loss.to(self.device) # Model Loading from the latest checkpoint if not found start from scratch. self.load_checkpoint(self.config.checkpoint_file) # Tensorboard Writer self.summary_writer = SummaryWriter(log_dir=self.config.summary_dir, comment='FCN8s') # # scheduler for the optimizer # self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, # 'min', patience=self.config.learning_rate_patience, # min_lr=1e-10, verbose=True) def save_checkpoint(self, filename='checkpoint.pth.tar', is_best=0): """ Saving the latest checkpoint of the training :param filename: filename which will contain the state :param is_best: flag is it is the best model :return: """ state = { 'epoch': self.current_epoch + 1, 'iteration': self.current_iteration, 'state_dict': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), } # Save the state torch.save(state, self.config.checkpoint_dir + filename) # If it is the best copy it to another file 'model_best.pth.tar' if is_best: shutil.copyfile(self.config.checkpoint_dir + filename, self.config.checkpoint_dir + 'model_best.pth.tar') def load_checkpoint(self, filename): filename = self.config.checkpoint_dir + filename try: self.logger.info("Loading checkpoint '{}'".format(filename)) checkpoint = torch.load(filename) self.current_epoch = checkpoint['epoch'] self.current_iteration = checkpoint['iteration'] self.model.load_state_dict(checkpoint['state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer']) self.logger.info( "Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n" .format(self.config.checkpoint_dir, checkpoint['epoch'], checkpoint['iteration'])) except OSError as e: self.logger.info( "No checkpoint exists from '{}'. Skipping...".format( self.config.checkpoint_dir)) self.logger.info("**First time to train**") def run(self): """ This function will the operator :return: """ assert self.config.mode in ['train', 'test', 'random'] try: if self.config.mode == 'test': self.test() else: self.train() except KeyboardInterrupt: self.logger.info("You have entered CTRL+C.. Wait to finalize") def train(self): """ Main training function, with per-epoch model saving """ for epoch in range(self.current_epoch, self.config.max_epoch): self.current_epoch = epoch self.scheduler.step(epoch) self.train_one_epoch() valid_mean_iou, valid_loss = self.validate() self.scheduler.step(valid_loss) is_best = valid_mean_iou > self.best_valid_mean_iou if is_best: self.best_valid_mean_iou = valid_mean_iou self.save_checkpoint(is_best=is_best) def train_one_epoch(self): """ One epoch training function """ # Initialize tqdm tqdm_batch = tqdm(self.data_loader.train_loader, total=self.data_loader.train_iterations, desc="Epoch-{}-".format(self.current_epoch)) # Set the model to be in training mode (for batchnorm) self.model.train() # Initialize your average meters epoch_loss = AverageMeter() metrics = IOUMetric(self.config.num_classes) for x, y in tqdm_batch: if self.cuda: x, y = x.pin_memory().cuda( non_blocking=self.config.async_loading), y.cuda( non_blocking=self.config.async_loading) x, y = Variable(x), Variable(y) # model pred = self.model(x) # loss cur_loss = self.loss(pred, y) if np.isnan(float(cur_loss.item())): raise ValueError('Loss is nan during training...') # optimizer self.optimizer.zero_grad() cur_loss.backward() self.optimizer.step() epoch_loss.update(cur_loss.item()) _, pred_max = torch.max(pred, 1) metrics.add_batch(pred_max.data.cpu().numpy(), y.data.cpu().numpy()) self.current_iteration += 1 # exit(0) epoch_acc, _, epoch_iou_class, epoch_mean_iou, _ = metrics.evaluate() self.summary_writer.add_scalar("epoch-training/loss", epoch_loss.val, self.current_iteration) self.summary_writer.add_scalar("epoch_training/mean_iou", epoch_mean_iou, self.current_iteration) tqdm_batch.close() print("Training Results at epoch-" + str(self.current_epoch) + " | " + "loss: " + str(epoch_loss.val) + " - acc-: " + str(epoch_acc) + "- mean_iou: " + str(epoch_mean_iou) + "\n iou per class: \n" + str(epoch_iou_class)) def validate(self): """ One epoch validation :return: """ tqdm_batch = tqdm(self.data_loader.valid_loader, total=self.data_loader.valid_iterations, desc="Valiation at -{}-".format(self.current_epoch)) # set the model in training mode self.model.eval() epoch_loss = AverageMeter() metrics = IOUMetric(self.config.num_classes) for x, y in tqdm_batch: if self.cuda: x, y = x.pin_memory().cuda( non_blocking=self.config.async_loading), y.cuda( non_blocking=self.config.async_loading) x, y = Variable(x), Variable(y) # model pred = self.model(x) # loss cur_loss = self.loss(pred, y) if np.isnan(float(cur_loss.item())): #print("error") raise ValueError('Loss is nan during Validation.') _, pred_max = torch.max(pred, 1) metrics.add_batch(pred_max.data.cpu().numpy(), y.data.cpu().numpy()) epoch_loss.update(cur_loss.item()) epoch_acc, _, epoch_iou_class, epoch_mean_iou, _ = metrics.evaluate() self.summary_writer.add_scalar("epoch_validation/loss", epoch_loss.val, self.current_iteration) self.summary_writer.add_scalar("epoch_validation/mean_iou", epoch_mean_iou, self.current_iteration) print("Validation Results at epoch-" + str(self.current_epoch) + " | " + "loss: " + str(epoch_loss.val) + " - acc-: " + str(epoch_acc) + "- mean_iou: " + str(epoch_mean_iou) + "\n iou per class: \n" + str(epoch_iou_class)) tqdm_batch.close() return epoch_mean_iou, epoch_loss.val def test(self): ''' test_loader = torch.utils.data.DataLoader(self.data_loader, batch_size = self.config.batch_size ,num_workers = self.config.data_loader_workers, pin_memory=self.config.pin_memory, shuffle = False) test_iterations = (len(self.data_loader) + self.config.batch_size) // self.config.batch_size ''' tqdm_batch = tqdm(self.data_loader.test_loader, total=self.data_loader.test_iterations, desc="Test at -{}-".format(self.current_epoch)) #tqdm_batch = tqdm(test_loader, total = test_iterations, desc = "Test at -{}-".format(self.current_epoch)) # set the model in training mode self.model.eval() ''' for x, y in tqdm_batch: if self.cuda: x, y = x.pin_memory().cuda(non_blocking=self.config.async_loading), y.cuda(non_blocking=self.config.async_loading) x, y = Variable(x), Variable(y) # model pred = self.model(x) ''' i = 0 for x_name, x in tqdm_batch: if self.cuda: x = x.pin_memory().cuda(non_blocking=self.config.async_loading) x = Variable(x) x = x.unsqueeze(0) pred = self.model(x) segmented_img = self.image_transform( self.color_transform( pred[0].cpu().max(0)[1].data.unsqueeze(0))) j = str(i) imageio.imsave(j + ".png", segmented_img) i += 1 #imageio.imsave(i+".png" , segmented_img) tqdm_batch.close() return def finalize(self): """ Finalize all the operations of the 2 Main classes of the process the operator and the data loader :return: """ print("Please wait while finalizing the operation.. Thank you") self.save_checkpoint() self.summary_writer.export_scalars_to_json("{}all_scalars.json".format( self.config.summary_dir)) self.summary_writer.close() self.data_loader.finalize()