Exemple #1
0
    def test_01_achieves_force_closure(self):
        """Test force closure metric on some random grasps"""
        random.seed(42)
        np.random.seed(42)

        from grasp_metrics import achieves_force_closure
        for i in range(100):
            random_thetas = [np.random.rand() * np.pi for _ in range(2)]
            random_points = [
                np.array([np.sin(theta), np.cos(theta)])
                for theta in random_thetas
            ]
            normals = [-x / np.linalg.norm(x) for x in random_points]
            if not np.allclose(normals[0], -normals[1]):
                FC = achieves_force_closure(random_points, normals, 1e-7)
                self.assertFalse(
                    FC,
                    "This means that you are computing force closure for two points not antipodal "
                    "(for two points and tiny friction, they need to be opposite to achieve force closure). "
                )

        for i in range(3):
            random_thetas = [np.random.rand() * 2 * np.pi for _ in range(100)]
            random_thetas[
                -1] = random_thetas[-2] + np.pi  # One is directly opposite
            random_points = [
                np.array([np.sin(theta), np.cos(theta)])
                for theta in random_thetas
            ]
            normals = [-x / np.linalg.norm(x) for x in random_points]
            FC = achieves_force_closure(random_points, normals, 0.1)
            self.assertTrue(
                FC,
                "These many grasp points should achieve force closure since "
                "One of them was chosen to be directly antipoldal. ")
            negative_normals = [-normal for normal in normals]

        for i in range(3):
            random_thetas = [
                np.random.rand() * np.pi / 3.0 for _ in range(100)
            ]
            random_points = [
                np.array([np.sin(theta), np.cos(theta)])
                for theta in random_thetas
            ]
            normals = [-x / np.linalg.norm(x) for x in random_points]
            FC = achieves_force_closure(random_points, normals, 0.001)
            negative_normals = [-normal for normal in normals]
            FC = achieves_force_closure(random_points, negative_normals, 0.1)
            self.assertFalse(
                FC, "We can't be pulling on the objects, only pushing. "
                "Recommend checking your f_{i,z} > 0 constraint.")
Exemple #2
0
    def test_00_achieves_force_closure(self):
        """Test force closure metric on some predefined grasps"""
        from grasp_metrics import achieves_force_closure

        points = [np.asarray([-1.0, 0.]), np.asarray([1.0, 0.])]
        normals = [np.asarray([1.0, 0.]), np.asarray([-1.0, 0.])]
        mu = 0.2
        FC = achieves_force_closure(points, normals, mu)
        self.assertTrue(
            FC, "This means that one of simple force closure checks failed ")

        r1 = np.asarray([0.1, 1])
        r2 = np.asarray([0.3, -0.4])
        r3 = np.asarray([-0.7, -0.5])
        points = [r1, r2, r3]
        n1 = np.asarray([-0.1, -1.1])
        n1 = n1 / np.linalg.norm(n1)
        n2 = np.asarray([-0.4, 1.1])
        n2 = n2 / np.linalg.norm(n2)
        n3 = np.asarray([0.8, 1.1])
        n3 = n3 / np.linalg.norm(n3)
        normals = [n1, n2, n3]
        mu = 1.5
        FC = achieves_force_closure(points, normals, mu)
        self.assertTrue(
            FC, "This means that one of simple force closure checks failed ")

        mu = 1e-7
        FC = achieves_force_closure(points, normals, mu)
        self.assertFalse(
            FC, "Friction cone constraint is probably not properly enforced. ")

        points = [np.asarray([-1.0, 0.]), np.asarray([1.0, 0.])]
        normals = [np.asarray([-1.0, 0.]), np.asarray([-1.0, 0.])]
        mu = 0.2
        FC = achieves_force_closure(points, normals, mu)
        self.assertTrue(
            not FC,
            "This means that one of simple force closure checks failed ")
Exemple #3
0
    def PlanGraspPoints(self):
        # First, extract the bounding geometry of the object.
        # Generally, our geometry is coming from 3d models, so
        # we have to do some legwork to extract 2D geometry. For
        # the examples we'll use in this set, we'll assume
        # that extracting the convex hull of the first visual element
        # is a good representation of the object geometry. (This is
        # not great! But it'll do the job for us, since we're going
        # to experiment with only simple objects.)
        kinsol = self.hand.doKinematics(
            self.x_nom[0:self.hand.get_num_positions()])
        self.manipuland_link_index = \
            self.hand.FindBody(self.manipuland_link_name).get_body_index()
        body = self.hand.get_body(self.manipuland_link_index)
        # For projecting into XY plane
        Tview = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 0.,
                                                               1.]])
        all_points = ExtractPlanarObjectGeometryConvexHull(body, Tview)

        # For later use: precompute the fingertip positions of the
        # robot in the nominal posture.
        nominal_fingertip_points = np.empty((2, self.num_fingers))
        for i in range(self.num_fingers):
            nominal_fingertip_points[:, i] = self.hand.transformPoints(
                kinsol, self.fingertip_position, self.finger_link_indices[i],
                0)[0:2, 0]

        # Search for an optimal grasp with N points
        random.seed(42)
        np.random.seed(42)

        def get_random_point_and_normal_on_surface(all_points):
            num_points = all_points.shape[1]
            i = random.choice(range(num_points - 1))
            first_point = np.asarray([all_points[0][i], all_points[1][i]])
            second_point = np.asarray(
                [all_points[0][i + 1], all_points[1][i + 1]])
            first_to_second = second_point - first_point
            # Clip to avoid interpolating close to a corner
            interpolate_param = np.clip(np.random.rand(), 0.2, 0.8)
            rand_point = first_point + interpolate_param * first_to_second

            normal = np.array([-first_to_second[1], first_to_second[0]]) \
                / np.linalg.norm(first_to_second)
            return rand_point, normal

        best_conv_volume = 0
        best_points = []
        best_normals = []
        best_finger_assignments = []
        for i in range(self.n_grasp_search_iters):
            grasp_points = []
            normals = []
            for j in range(self.num_fingers):
                point, normal = \
                    get_random_point_and_normal_on_surface(all_points)
                # check for duplicates or close points -- fingertip
                # radius is 0.2, so require twice that margin to avoid
                # intersection fingertips.
                num_rejected = 0
                while min([1.0] + [
                        np.linalg.norm(grasp_point - point, 2)
                        for grasp_point in grasp_points
                ]) <= 0.4:
                    point, normal = \
                        get_random_point_and_normal_on_surface(all_points)
                    num_rejected += 1
                    if num_rejected > 10000:
                        print "Rejected 10000 points in a row due to crowding." \
                              " Your object is a bit too small for your number of" \
                              " fingers."
                        break
                grasp_points.append(point)
                normals.append(normal)
            if achieves_force_closure(grasp_points, normals, self.mu):
                # Test #1: Rank in terms of convex hull volume of grasp points
                volume = compute_convex_hull_volume(grasp_points)
                if volume < best_conv_volume:
                    continue

                # Test #2: Does IK work for this point?
                self.grasp_points = grasp_points
                self.grasp_normals = normals

                # Pick optimal finger assignment that
                # minimizes distance between fingertips in the
                # nominal posture, and the chosen grasp points
                grasp_points_world = self.transform_grasp_points_manipuland(
                    self.x_nom)[0:2, :]

                prog = MathematicalProgram()
                # We'd *really* like these to be binary variables,
                # but unfortunately don't have a MIP solver available in the
                # course docker container. Instead, we'll solve an LP,
                # and round the result to the nearest feasible integer
                # solutions. Intuitively, this LP should probably reach its
                # optimal value at an extreme point (where the variables
                # all take integer value). I've not yet observed this
                # not occuring in practice!
                assignment_vars = prog.NewContinuousVariables(
                    self.num_fingers, self.num_fingers, "assignment")
                for grasp_i in range(self.num_fingers):
                    # Every row and column of assignment vars sum to one --
                    # each finger matches to one grasp position
                    prog.AddLinearConstraint(
                        np.sum(assignment_vars[:, grasp_i]) == 1.)
                    prog.AddLinearConstraint(
                        np.sum(assignment_vars[grasp_i, :]) == 1.)
                    for finger_i in range(self.num_fingers):
                        # If this grasp assignment is active,
                        # add a cost equal to the distance between
                        # nominal pose and grasp position
                        prog.AddLinearCost(
                            assignment_vars[grasp_i, finger_i] *
                            np.linalg.norm(grasp_points_world[:, grasp_i] -
                                           nominal_fingertip_points[:,
                                                                    finger_i]))
                        prog.AddBoundingBoxConstraint(
                            0., 1., assignment_vars[grasp_i, finger_i])
                result = Solve(prog)
                assignments = result.GetSolution(assignment_vars)
                # Round assignments to nearest feasible set
                claimed = [False] * self.num_fingers
                for grasp_i in range(self.num_fingers):
                    order = np.argsort(assignments[grasp_i, :])
                    fill_i = self.num_fingers - 1
                    while claimed[order[fill_i]] is not False:
                        fill_i -= 1
                    if fill_i < 0:
                        raise Exception("Finger association failed. "
                                        "Horrible bug. Tell Greg")
                    assignments[grasp_i, :] *= 0.
                    assignments[grasp_i, order[fill_i]] = 1.
                    claimed[order[fill_i]] = True

                # Populate actual assignments
                self.grasp_finger_assignments = []
                for grasp_i in range(self.num_fingers):
                    for finger_i in range(self.num_fingers):
                        if assignments[grasp_i, finger_i] == 1.:
                            self.grasp_finger_assignments.append(
                                (finger_i, np.array(self.fingertip_position)))
                            continue

                qinit, info = self.ComputeTargetPosture(
                    self.x_nom,
                    self.x_nom[(self.nq - 3):self.nq],
                    backoff_distance=0.2)
                if info != 1:
                    continue

                best_conv_volume = volume
                best_points = grasp_points
                best_normals = normals
                best_finger_assignments = self.grasp_finger_assignments

        if len(best_points) == 0:
            print "After %d attempts, couldn't find a good grasp "\
                  "for this object." % self.n_grasp_search_iters
            print "Proceeding with a horrible random guess."
            best_points = [
                np.random.uniform(-1., 1., 2) for i in range(self.num_fingers)
            ]
            best_normals = [
                np.random.uniform(-1., 1., 2) for i in range(self.num_fingers)
            ]
            best_finger_assignments = [(i, self.fingertip_position)
                                       for i in range(self.num_fingers)]

        self.grasp_points = best_points
        self.grasp_normals = best_normals
        self.grasp_finger_assignments = best_finger_assignments