Exemple #1
0
def test_omni_unconnected():
    np.random.seed(4)
    n = 100
    m = 50

    graphs = [er_nm(n, m) for _ in range(2)]
    omni = OmnibusEmbed()

    with pytest.warns(UserWarning):
        omni.fit(graphs)
Exemple #2
0
def test_diag_aug():
    np.random.seed(5)
    n = 100
    p = 0.25

    graphs_list = [er_np(n, p) for _ in range(2)]
    graphs_arr = np.array(graphs_list)

    # Test that array and list inputs results in same embeddings
    omni_arr = OmnibusEmbed(diag_aug=True).fit_transform(graphs_arr)
    omni_list = OmnibusEmbed(diag_aug=True).fit_transform(graphs_list)

    assert array_equal(omni_list, omni_arr)
Exemple #3
0
def test_omni_embed():
    """
    We compare the difference of norms of OmniBar and ABar.
    ABar is the lowest variance estimate of the latent positions X.
    OmniBar should be reasonablly close to ABar when n_vertices is high. 
    """
    def compute_bar(arr):
        n = arr.shape[0] // 2
        return (arr[:n] + arr[n:]) / 2

    X, A1, A2 = generate_data(1000)
    Abar = (A1 + A2) / 2

    np.random.seed(11)
    omni = OmnibusEmbed(n_components=3)
    OmniBar = compute_bar(omni.fit_transform([A1, A2]))

    omni = OmnibusEmbed(n_components=3)
    ABar = compute_bar(omni.fit_transform([Abar, Abar]))

    tol = 1.0e-2
    assert allclose(norm(OmniBar, axis=1),
                    norm(ABar, axis=1),
                    rtol=tol,
                    atol=tol)
Exemple #4
0
    def run(diag_aug):
        X, A1, A2 = generate_data(1000, seed=2)
        Abar = (A1 + A2) / 2

        omni = OmnibusEmbed(n_components=3, diag_aug=diag_aug)
        OmniBar = compute_bar(omni.fit_transform([A1, A2]))

        omni = OmnibusEmbed(n_components=3, diag_aug=diag_aug)
        ABar = compute_bar(omni.fit_transform([Abar, Abar]))

        tol = 1.0e-2
        assert allclose(norm(OmniBar, axis=1),
                        norm(ABar, axis=1),
                        rtol=tol,
                        atol=tol)
Exemple #5
0
def test_omni_matrix_invalid_inputs():
    with pytest.raises(ValueError):
        empty_list = []
        omni = OmnibusEmbed(n_components=2)
        omni.fit(empty_list)

    with pytest.raises(ValueError):
        wrong_shapes = [np.ones((10, 10)), np.ones((20, 20))]
        omni = OmnibusEmbed(n_components=2)
        omni.fit(wrong_shapes)

    with pytest.raises(TypeError):
        wrong_dtypes = [1, 2, 3]
        omni = OmnibusEmbed(n_components=2)
        omni.fit(wrong_dtypes)