Exemple #1
0
    def test_DCER_score(self):
        p_mat = self.p_mat
        graph = self.graph
        estimator = DCEREstimator()
        _test_score(estimator, p_mat, graph)

        with pytest.raises(ValueError):
            estimator.score_samples(graph=graph[1:500, 1:500])
Exemple #2
0
    def test_DCER_inputs(self):
        with pytest.raises(TypeError):
            DCEREstimator(directed="hey")

        with pytest.raises(TypeError):
            DCEREstimator(loops=6)

        graph = er_np(100, 0.5)
        dcere = DCEREstimator()

        with pytest.raises(ValueError):
            dcere.fit(graph[:, :99])

        with pytest.raises(ValueError):
            dcere.fit(graph[..., np.newaxis])
Exemple #3
0
 def test_DCER_nparams(self):
     n_verts = 1000
     graph = self.graph
     e = DCEREstimator(directed=True)
     e.fit(graph)
     assert e._n_parameters() == (n_verts + 1)
Exemple #4
0
    def test_DCER_sample(self):
        np.random.seed(8888)
        estimator = DCEREstimator(directed=True, loops=False)
        g = self.graph
        p_mat = self.p_mat
        with pytest.raises(NotFittedError):
            estimator.sample()

        estimator.fit(g)
        with pytest.raises(ValueError):
            estimator.sample(n_samples=-1)

        with pytest.raises(TypeError):
            estimator.sample(n_samples="nope")
        B = 0.5
        dc = np.random.uniform(0.25, 0.75, size=100)
        p_mat = np.outer(dc, dc) * B
        p_mat -= np.diag(np.diag(p_mat))
        g = sample_edges(p_mat, directed=True)
        estimator.fit(g)
        estimator.p_mat_ = p_mat
        _test_sample(estimator, p_mat, n_samples=1000, atol=0.2)
fig.suptitle('Erdos-Reyni (ER) model', fontsize=16)
print(f"ER \"p\" parameter: {er.p_}")
plt.savefig('figure.png')

# ---------------------------------------
# Degree-corrected Erdos-Reyni (DCER) model
# ---------------------------------------
'''A slightly more complicated variant of the ER model is the degree-corrected
Erdos-Reyni model (DCER). Here, there is still a global parameter 𝑝 to specify
relative connection probability between all edges. However, we add a promiscuity
parameter 𝜃𝑖 for each node 𝑖 which specifies its expected degree relative to other
nodes: 𝑃𝑖𝑗=𝜃𝑖𝜃𝑗𝑝, so the probility of an edge from 𝑖 to 𝑗 is a function of the two nodes'
degree-correction parameters, and the overall probability of an edge in the graph'''

from graspy.models import DCEREstimator
dcer = DCEREstimator(directed=True, loops=False)
dcer.fit(adj)  # Fit Degree-corrected Erdos-Reyni model
promiscuities = dcer.degree_corrections_

# Show results
fig, ax = plt.subplots(1, 2)
plotHeatmap(dcer.p_mat_,
            "DCER probability matrix",
            params={
                'vmin': 0,
                'vmax': 1,
                'ax': ax[0]
            })
plotHeatmap(dcer.sample()[0], "DCER sample", params={'ax': ax[1]})
fig.suptitle('Degree-corrected Erdos-Reyni (ER) model', fontsize=16)
print(f"DCER \"p\" parameter: {dcer.p_}")
Exemple #6
0
    outer_hier_labels=lcc_hemisphere,
    hier_label_fontsize=10,
    sort_nodes=True,
)
gridplot(
    [embed_graph],
    height=15,
    inner_hier_labels=lcc_simple_classes,
    outer_hier_labels=lcc_hemisphere,
    hier_label_fontsize=10,
    sizes=(1, 10),
    sort_nodes=True,
)

#%%
dcer = DCEREstimator()
dcer.fit(embed_graph)
gridplot(
    [binarize(embed_graph)],
    height=15,
    inner_hier_labels=lcc_simple_classes,
    outer_hier_labels=lcc_hemisphere,
    hier_label_fontsize=10,
    sizes=(5, 5),
    sort_nodes=True,
)
gridplot(
    [dcer.sample()[0]],
    height=15,
    inner_hier_labels=lcc_simple_classes,
    outer_hier_labels=lcc_hemisphere,
Exemple #7
0
        font_scale=1.5,
        title="ER probability matrix",
        vmin=0, vmax=1,
        sort_nodes=True)

plt.savefig("ERProbabilityMatrix", bbox_inches='tight')

heatmap(er.sample()[0],
        inner_hier_labels=labels,
        font_scale=1.5,
        title="ER sample",
        sort_nodes=True);

plt.savefig("ERSample", bbox_inches='tight')

dcer = DCEREstimator(directed=True,loops=False)
dcer.fit(adj)
print(f"DCER \"p\" parameter: {dcer.p_}")
heatmap(dcer.p_mat_,
        inner_hier_labels=labels,
        vmin=0,
        vmax=1,
        font_scale=1.5,
        title="DCER probability matrix",
        sort_nodes=True)

plt.savefig("DCERProbabilityMatrix", bbox_inches='tight')

heatmap(dcer.sample()[0],
        inner_hier_labels=labels,
        font_scale=1.5,
Exemple #8
0
 def test_DCER_score(self):
     p_mat = self.p_mat
     graph = self.graph
     estimator = DCEREstimator()
     _test_score(estimator, p_mat, graph)