def __init__(
        self,
        name: str,
        datasource_name: str,
        bucket: str,
        execution_engine: Optional[ExecutionEngine] = None,
        default_regex: Optional[dict] = None,
        sorters: Optional[list] = None,
        prefix: str = "",
        delimiter: str = "/",
        max_keys: int = 1000,
        boto3_options: Optional[dict] = None,
        batch_spec_passthrough: Optional[dict] = None,
    ) -> None:
        """
        InferredAssetS3DataConnector for connecting to S3.

        Args:
            name (str): required name for data_connector
            datasource_name (str): required name for datasource
            bucket (str): bucket for S3
            execution_engine (ExecutionEngine): optional reference to ExecutionEngine
            default_regex (dict): optional regex configuration for filtering data_references
            sorters (list): optional list of sorters for sorting data_references
            prefix (str): S3 prefix
            delimiter (str): S3 delimiter
            max_keys (int): S3 max_keys (default is 1000)
            boto3_options (dict): optional boto3 options
            batch_spec_passthrough (dict): dictionary with keys that will be added directly to batch_spec
        """
        logger.debug(f'Constructing InferredAssetS3DataConnector "{name}".')

        super().__init__(
            name=name,
            datasource_name=datasource_name,
            execution_engine=execution_engine,
            default_regex=default_regex,
            sorters=sorters,
            batch_spec_passthrough=batch_spec_passthrough,
        )

        self._bucket = bucket
        self._prefix = ConfiguredAssetS3DataConnector.sanitize_prefix_for_s3(
            prefix)
        self._delimiter = delimiter
        self._max_keys = max_keys

        if boto3_options is None:
            boto3_options = {}

        try:
            self._s3 = boto3.client("s3", **boto3_options)
        except (TypeError, AttributeError):
            raise ImportError(
                "Unable to load boto3 (it is required for InferredAssetS3DataConnector)."
            )
Exemple #2
0
def test_get_batch_with_split_on_whole_table_s3_with_configured_asset_s3_data_connector(
    test_s3_files, test_df_small
):
    bucket, _keys = test_s3_files
    expected_df = test_df_small

    execution_engine: ExecutionEngine = PandasExecutionEngine()

    my_data_connector = ConfiguredAssetS3DataConnector(
        name="my_data_connector",
        datasource_name="FAKE_DATASOURCE_NAME",
        bucket=bucket,
        execution_engine=execution_engine,
        prefix="",
        assets={"alpha": {}},
        default_regex={
            "pattern": "alpha-(.*)\\.csv",
            "group_names": ["index"],
        },
    )
    batch_def: BatchDefinition = BatchDefinition(
        datasource_name="FAKE_DATASOURCE_NAME",
        data_connector_name="my_data_connector",
        data_asset_name="alpha",
        batch_identifiers=IDDict(index=1),
        batch_spec_passthrough={
            "reader_method": "read_csv",
            "splitter_method": "_split_on_whole_table",
        },
    )
    test_df = execution_engine.get_batch_data(
        batch_spec=my_data_connector.build_batch_spec(batch_definition=batch_def)
    )
    assert test_df.dataframe.shape == expected_df.shape

    # if key does not exist
    batch_def_no_key = BatchDefinition(
        datasource_name="FAKE_DATASOURCE_NAME",
        data_connector_name="my_data_connector",
        data_asset_name="alpha",
        batch_identifiers=IDDict(index=9),
        batch_spec_passthrough={
            "reader_method": "read_csv",
            "splitter_method": "_split_on_whole_table",
        },
    )
    with pytest.raises(ge_exceptions.ExecutionEngineError):
        execution_engine.get_batch_data(
            batch_spec=my_data_connector.build_batch_spec(
                batch_definition=batch_def_no_key
            )
        )
    def check_sameness(prefix, expected_output):
        s3_sanitized = ConfiguredAssetS3DataConnector.sanitize_prefix_for_s3(prefix)
        file_system_sanitized = FilePathDataConnector.sanitize_prefix(prefix)
        if os.sep == "\\":  # Fix to ensure tests work on Windows
            file_system_sanitized = file_system_sanitized.replace("\\", "/")

        assert file_system_sanitized == expected_output, (
            f"Expected output does not match original sanitization behavior, got "
            f"{file_system_sanitized} instead of {expected_output}"
        )
        assert (
            s3_sanitized == expected_output == file_system_sanitized
        ), f'S3 sanitized result is incorrect, "{s3_sanitized} instead of {expected_output}'
def test_get_batch_with_split_on_whole_table_s3_with_configured_asset_s3_data_connector(
):
    region_name: str = "us-east-1"
    bucket: str = "test_bucket"
    conn = boto3.resource("s3", region_name=region_name)
    conn.create_bucket(Bucket=bucket)
    client = boto3.client("s3", region_name=region_name)

    test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
    keys: List[str] = [
        "path/A-100.csv",
        "path/A-101.csv",
        "directory/B-1.csv",
        "directory/B-2.csv",
    ]
    for key in keys:
        client.put_object(Bucket=bucket,
                          Body=test_df.to_csv(index=False).encode("utf-8"),
                          Key=key)
    path = "path/A-100.csv"
    full_path = f"s3a://{os.path.join(bucket, path)}"

    my_data_connector = ConfiguredAssetS3DataConnector(
        name="my_data_connector",
        datasource_name="FAKE_DATASOURCE_NAME",
        default_regex={
            "pattern": "alpha-(.*)\\.csv",
            "group_names": ["index"],
        },
        bucket=bucket,
        prefix="",
        assets={"alpha": {}},
    )

    test_df = PandasExecutionEngine().get_batch_data(batch_spec=S3BatchSpec(
        path=full_path,
        reader_method="read_csv",
        splitter_method="_split_on_whole_table",
    ))
    assert test_df.dataframe.shape == (2, 2)
def test_basic_instantiation():
    region_name: str = "us-east-1"
    bucket: str = "test_bucket"
    conn = boto3.resource("s3", region_name=region_name)
    conn.create_bucket(Bucket=bucket)
    client = boto3.client("s3", region_name=region_name)

    test_df: pd.DataFrame = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})

    keys: List[str] = [
        "alpha-1.csv",
        "alpha-2.csv",
        "alpha-3.csv",
    ]
    for key in keys:
        client.put_object(
            Bucket=bucket, Body=test_df.to_csv(index=False).encode("utf-8"), Key=key
        )

    my_data_connector = ConfiguredAssetS3DataConnector(
        name="my_data_connector",
        datasource_name="FAKE_DATASOURCE_NAME",
        default_regex={"pattern": "alpha-(.*)\\.csv", "group_names": ["index"],},
        bucket=bucket,
        prefix="",
        assets={"alpha": {}},
    )

    assert my_data_connector.self_check() == {
        "class_name": "ConfiguredAssetS3DataConnector",
        "data_asset_count": 1,
        "example_data_asset_names": ["alpha",],
        "data_assets": {
            "alpha": {
                "example_data_references": [
                    "alpha-1.csv",
                    "alpha-2.csv",
                    "alpha-3.csv",
                ],
                "batch_definition_count": 3,
            },
        },
        "example_unmatched_data_references": [],
        "unmatched_data_reference_count": 0,
        "example_data_reference": {},
    }

    # noinspection PyProtectedMember
    my_data_connector._refresh_data_references_cache()
    assert my_data_connector.get_data_reference_list_count() == 3
    assert my_data_connector.get_unmatched_data_references() == []

    # Illegal execution environment name
    with pytest.raises(ValueError):
        print(
            my_data_connector.get_batch_definition_list_from_batch_request(
                BatchRequest(
                    datasource_name="something",
                    data_connector_name="my_data_connector",
                    data_asset_name="something",
                )
            )
        )