def _spark(cls, column_A, column_B, **kwargs): value_pairs_set = kwargs.get("value_pairs_set") if value_pairs_set is None: # vacuously true return column_A == column_B value_pairs_set = [(x, y) for x, y in value_pairs_set] conditions = [ (column_A.eqNullSafe(F.lit(x)) & column_B.eqNullSafe(F.lit(y))) for x, y in value_pairs_set ] row_wise_cond = reduce(lambda a, b: a | b, conditions) return row_wise_cond
def _spark( cls, execution_engine: "SparkDFExecutionEngine", metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): ignore_row_if = metric_value_kwargs["ignore_row_if"] compute_domain_kwargs = copy.deepcopy(metric_domain_kwargs) if ignore_row_if == "both_values_are_missing": compute_domain_kwargs["row_condition"] = ( F.col(metric_domain_kwargs["column_A"]).isNotNull() & F.col(metric_domain_kwargs["column_B"]).isNotNull()) compute_domain_kwargs["condition_parser"] = "spark" elif ignore_row_if == "either_value_is_missing": compute_domain_kwargs["row_condition"] = ( F.col(metric_domain_kwargs["column_A"]).isNotNull() | F.col(metric_domain_kwargs["column_B"]).isNotNull()) compute_domain_kwargs["condition_parser"] = "spark" ( df, compute_domain_kwargs, accessor_domain_kwargs, ) = execution_engine.get_compute_domain( compute_domain_kwargs, domain_type=MetricDomainTypes.COLUMN_PAIR) df = df.withColumn( "combined", F.array( F.col(metric_domain_kwargs["column_A"]), F.col(metric_domain_kwargs["column_A"]), ), ) value_set_df = (SQLContext(df._sc).createDataFrame( metric_value_kwargs["value_pairs_set"], ["col_A", "col_B"]).select( F.array("col_A", "col_B").alias("set_AB"))) df = df.join(value_set_df, df["combined"] == value_set_df["set_AB"], "left").withColumn( "__success", F.when(F.col("set_AB").isNull(), F.lit(False)).otherwise(F.lit(True)), ) return df["__success"], compute_domain_kwargs, accessor_domain_kwargs
def _spark( cls, column, value_set, **kwargs, ): # no need to parse as datetime; just compare the strings as is parse_strings_as_datetimes: bool = ( kwargs.get("parse_strings_as_datetimes") or False ) if parse_strings_as_datetimes: # deprecated-v0.13.41 warnings.warn( """The parameter "parse_strings_as_datetimes" is deprecated as of v0.13.41 in \ v0.16. As part of the V3 API transition, we've moved away from input transformation. For more information, \ please see: https://greatexpectations.io/blog/why_we_dont_do_transformations_for_expectations/ """, DeprecationWarning, ) if value_set is None: # vacuously true return F.lit(True) return column.isin(value_set)
def _spark( cls, execution_engine, metric_domain_kwargs, metric_value_kwargs, metrics, runtime_configuration, ): column_name = metric_domain_kwargs["column"] table_columns = metrics["table.column_types"] column_metadata = [ col for col in table_columns if col["name"] == column_name ][0] if isinstance(column_metadata["type"], (sparktypes.StringType)): column = F.col(column_name).cast(sparktypes.IntegerType()) else: raise TypeError( "Column must be a string-type capable of being cast to int.") compute_domain_kwargs = metric_domain_kwargs ( df, compute_domain_kwargs, accessor_domain_kwargs, ) = execution_engine.get_compute_domain( compute_domain_kwargs, domain_type=MetricDomainTypes.COLUMN) if any(np.array(df.select(column.isNull()).collect())): raise TypeError( "Column must be a string-type capable of being cast to int.") diff = column - F.lag(column).over(Window.orderBy(F.lit("constant"))) diff = F.when(diff.isNull(), 1).otherwise(diff) if metric_value_kwargs["strictly"] is True: diff = F.when(diff <= 0, F.lit(False)).otherwise(F.lit(True)) else: diff = F.when(diff < 0, F.lit(False)).otherwise(F.lit(True)) return ( np.array(df.select(diff).collect()).reshape(-1)[1:], compute_domain_kwargs, accessor_domain_kwargs, )
def _spark(cls, column_list, **kwargs): sum_total = kwargs.get("sum_total") expression = "+".join([ f"COALESCE({column_name}, 0)" for column_name in column_list.columns ]) row_wise_cond = F.expr(expression) == F.lit(sum_total) return row_wise_cond
def _spark( cls, execution_engine: "SqlAlchemyExecutionEngine", metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): return F.count(F.lit(1)), metric_domain_kwargs, dict()
def _spark( cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs, metric_value_kwargs, metrics, runtime_configuration, ): ( selectable, compute_domain_kwargs, accessor_domain_kwargs, ) = execution_engine.get_compute_domain(metric_domain_kwargs, MetricDomainTypes.COLUMN) column_name = accessor_domain_kwargs["column"] column = F.col(column_name) query = F.when(column == 3, F.lit(False)).otherwise(F.lit(True)) return (query, compute_domain_kwargs, accessor_domain_kwargs)
def _spark(cls, column, **kwargs): center_point = kwargs.get("center_point") unit = kwargs.get("unit") range = kwargs.get("range") projection = kwargs.get("projection") if projection == "fcc": if unit == "kilometers": distances = F.udf( lambda x, y=center_point: fcc_projection(x, y), sparktypes.FloatType(), ) elif unit == "miles": distances = F.udf( lambda x, y=center_point: fcc_projection(x, y) * 1.609344, sparktypes.FloatType(), ) range = range * 1.609344 return F.when(distances(column) < range, F.lit(True)).otherwise(F.lit(False)) elif projection == "pythagorean": if unit == "kilometers": distances = F.udf( lambda x, y=center_point: pythagorean_projection(x, y), sparktypes.FloatType(), ) elif unit == "miles": distances = F.udf( lambda x, y=center_point: pythagorean_projection(x, y) * 1.609344, sparktypes.FloatType(), ) range = range * 1.609344 return F.when(distances(column) < range, F.lit(True)).otherwise(F.lit(False))
def _spark( cls, column, value_set, **kwargs, ): # no need to parse as datetime; just compare the strings as is parse_strings_as_datetimes: bool = ( kwargs.get("parse_strings_as_datetimes") or False ) if parse_strings_as_datetimes: warnings.warn( f"""The parameter "parse_strings_as_datetimes" is no longer supported and will be deprecated in a \ future release. Please update code accordingly. Moreover, in "{cls.__name__}._spark()", it is not used. """, DeprecationWarning, ) if value_set is None: # vacuously true return F.lit(True) return column.isin(value_set)
def _spark(cls, column, **kwargs): return F.count(F.lit(1)).over(Window.partitionBy(column)) <= 1
def _spark( cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[str, Any], runtime_configuration: Dict, ): parse_strings_as_datetimes: bool = ( metric_value_kwargs.get("parse_strings_as_datetimes") or False) if parse_strings_as_datetimes: warnings.warn( f"""The parameter "parse_strings_as_datetimes" is no longer supported and will be deprecated in a \ future release. Please update code accordingly. Moreover, in "{cls.__name__}._spark()", types are detected naturally. """, DeprecationWarning, ) # check if column is any type that could have na (numeric types) column_name = metric_domain_kwargs["column"] table_columns = metrics["table.column_types"] column_metadata = [ col for col in table_columns if col["name"] == column_name ][0] if isinstance( column_metadata["type"], ( sparktypes.LongType, sparktypes.DoubleType, sparktypes.IntegerType, ), ): # if column is any type that could have NA values, remove them (not filtered by .isNotNull()) compute_domain_kwargs = execution_engine.add_column_row_condition( metric_domain_kwargs, filter_null=cls.filter_column_isnull, filter_nan=True, ) else: compute_domain_kwargs = metric_domain_kwargs ( df, compute_domain_kwargs, accessor_domain_kwargs, ) = execution_engine.get_compute_domain(compute_domain_kwargs, MetricDomainTypes.COLUMN) # NOTE: 20201105 - parse_strings_as_datetimes is not supported here; # instead detect types naturally column = F.col(column_name) if isinstance(column_metadata["type"], (sparktypes.TimestampType, sparktypes.DateType)): diff = F.datediff( column, F.lag(column).over(Window.orderBy(F.lit("constant")))) else: diff = column - F.lag(column).over( Window.orderBy(F.lit("constant"))) diff = F.when(diff.isNull(), -1).otherwise(diff) # NOTE: because in spark we are implementing the window function directly, # we have to return the *unexpected* condition if metric_value_kwargs["strictly"]: return ( F.when(diff >= 0, F.lit(True)).otherwise(F.lit(False)), compute_domain_kwargs, accessor_domain_kwargs, ) # If we expect values to be flat or decreasing then unexpected values are those # that are decreasing else: return ( F.when(diff > 0, F.lit(True)).otherwise(F.lit(False)), compute_domain_kwargs, accessor_domain_kwargs, )
def _spark( cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[str, Any], runtime_configuration: Dict, ): parse_strings_as_datetimes: bool = ( metric_value_kwargs.get("parse_strings_as_datetimes") or False) if parse_strings_as_datetimes: # deprecated-v0.13.41 warnings.warn( """The parameter "parse_strings_as_datetimes" is deprecated as of v0.13.41 in \ v0.16. As part of the V3 API transition, we've moved away from input transformation. For more information, \ please see: https://greatexpectations.io/blog/why_we_dont_do_transformations_for_expectations/ """, DeprecationWarning, ) # check if column is any type that could have na (numeric types) column_name = metric_domain_kwargs["column"] table_columns = metrics["table.column_types"] column_metadata = [ col for col in table_columns if col["name"] == column_name ][0] if isinstance( column_metadata["type"], ( sparktypes.LongType, sparktypes.DoubleType, sparktypes.IntegerType, ), ): # if column is any type that could have NA values, remove them (not filtered by .isNotNull()) compute_domain_kwargs = execution_engine.add_column_row_condition( metric_domain_kwargs, filter_null=cls.filter_column_isnull, filter_nan=True, ) else: compute_domain_kwargs = metric_domain_kwargs ( df, compute_domain_kwargs, accessor_domain_kwargs, ) = execution_engine.get_compute_domain( compute_domain_kwargs, domain_type=MetricDomainTypes.COLUMN) # NOTE: 20201105 - parse_strings_as_datetimes is not supported here; # instead detect types naturally column = F.col(column_name) if isinstance(column_metadata["type"], (sparktypes.TimestampType, sparktypes.DateType)): diff = F.datediff( column, F.lag(column).over(Window.orderBy(F.lit("constant")))) else: diff = column - F.lag(column).over( Window.orderBy(F.lit("constant"))) diff = F.when(diff.isNull(), 1).otherwise(diff) # NOTE: because in spark we are implementing the window function directly, # we have to return the *unexpected* condition. # If we expect values to be *strictly* increasing then unexpected values are those # that are flat or decreasing if metric_value_kwargs["strictly"] is True: return ( F.when(diff <= 0, F.lit(True)).otherwise(F.lit(False)), compute_domain_kwargs, accessor_domain_kwargs, ) # If we expect values to be flat or increasing then unexpected values are those # that are decreasing else: return ( F.when(diff < 0, F.lit(True)).otherwise(F.lit(False)), compute_domain_kwargs, accessor_domain_kwargs, )
def _spark(cls, column, value_set, **kwargs): if value_set is None: # vacuously true return F.lit(True) return column.isin(value_set)
def _spark( cls, execution_engine: SparkDFExecutionEngine, metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): # check if column is any type that could have na (numeric types) column_name = metric_domain_kwargs["column"] table_columns = metrics["table.column_types"] column_metadata = [ col for col in table_columns if col["name"] == column_name ][0] if isinstance( column_metadata["type"], ( sparktypes.LongType, sparktypes.DoubleType, sparktypes.IntegerType, ), ): # if column is any type that could have NA values, remove them (not filtered by .isNotNull()) compute_domain_kwargs = execution_engine.add_column_row_condition( metric_domain_kwargs, filter_null=cls.filter_column_isnull, filter_nan=True, ) else: compute_domain_kwargs = metric_domain_kwargs ( df, compute_domain_kwargs, accessor_domain_kwargs, ) = execution_engine.get_compute_domain( compute_domain_kwargs, domain_type=MetricDomainTypes.COLUMN) # NOTE: 20201105 - parse_strings_as_datetimes is not supported here; # instead detect types naturally column = F.col(column_name) if isinstance(column_metadata["type"], (sparktypes.TimestampType, sparktypes.DateType)): diff = F.datediff( column, F.lag(column).over(Window.orderBy(F.lit("constant")))) else: diff = column - F.lag(column).over( Window.orderBy(F.lit("constant"))) diff = F.when(diff.isNull(), 1).otherwise(diff) # NOTE: because in spark we are implementing the window function directly, # we have to return the *unexpected* condition. # If we expect values to be *strictly* increasing then unexpected values are those # that are flat or decreasing if metric_value_kwargs["strictly"] is True: return ( F.when(diff <= 0, F.lit(True)).otherwise(F.lit(False)), compute_domain_kwargs, accessor_domain_kwargs, ) # If we expect values to be flat or increasing then unexpected values are those # that are decreasing else: return ( F.when(diff < 0, F.lit(True)).otherwise(F.lit(False)), compute_domain_kwargs, accessor_domain_kwargs, )
def _spark(cls, column_list, **kwargs): column_names = column_list.columns row_wise_cond = (F.count(F.lit(1)).over( Window.partitionBy(F.struct(*column_names))) <= 1) return row_wise_cond