def optimization(self): """ grid search for optimized parameters :return: """ self.get_default_model() self.best_params, self.best_scores = search(self.model, self.get_model_name(), self.X, self.y, self.params)
def optimization(self): """ function to perform grid search of best parameters :return: """ self.get_default_model() self.best_params, self.best_scores = search(self.model, self.get_model_name(), self.X, self.y, self.params)
def select_ensemble_model(self, P_train, Y_train): """ function to select ensemble parameters :param P_train: :param Y_train: :return: best parameters """ ensemble_clf = LogisticRegression(random_state=RANDOM_STATE) best_params, self.best_scores = search(ensemble_clf, "ensemble", P_train, Y_train, self.params["ensemble"]) logging.info("Best parameters for ensemble: {}".format(best_params)) return best_params
def optimization(self): self.get_default_model() self.best_params, self.best_scores = search(self.model, self.get_model_name(), self.X, self.y, self.params)