def test_initialize_defaults(): model = BmiGridmet() model.initialize() grid_id = model.get_var_grid("daily_maximum_temperature") size = model.get_grid_size(grid_id) vals = np.empty(size) model.get_value("daily_maximum_temperature", vals) min = np.nanmin(vals) max = np.nanmax(vals) npt.assert_almost_equal(min, 266.399, decimal=2) npt.assert_almost_equal(max, 305.0, decimal=1)
def test_value_size(): model = BmiGridmet() model.initialize() grid_id = model.get_var_grid("daily_maximum_temperature") size = model.get_grid_size(grid_id) vals1 = np.empty(size) z = model.get_value("daily_maximum_temperature", vals1) assert model.get_grid_size(0) == z.size
def test_get_value_copy(): model = BmiGridmet() model.initialize() grid_id = model.get_var_grid("daily_maximum_temperature") size = model.get_grid_size(grid_id) vals1 = np.empty(size) vals2 = np.empty(size) z0 = model.get_value("daily_maximum_temperature", vals1) z1 = model.get_value("daily_maximum_temperature", vals2) assert z0 is not z1 npt.assert_array_almost_equal(z0, z1)
# x.initialize('gridmet_bmi.yaml') x.initialize() print(x.get_input_var_names()) print(x.get_output_var_names()) grid_id = x.get_var_grid('daily_maximum_temperature') size = x.get_grid_size(grid_id) shape = np.empty(2, dtype=np.int) origin = np.empty(2, dtype=np.float) delta = np.empty(2, dtype=np.float) x.get_grid_origin(grid_id, origin) x.get_grid_spacing(grid_id, spacing=delta) tmp = x.get_grid_shape(grid_id, shape) print(type(shape), shape[0], shape[1], shape) tmp2 = np.array([585, 1386]) npt.assert_almost_equal(shape, np.array([585, 1386])) vals = np.zeros(size) x.get_value('daily_maximum_temperature', vals) print(np.nanmin(vals)) print(np.nanmax(vals)) print_times(x) x.update() print_times(x) tmp = 0 x.finalize() # yamldict = {"_start_date": datetime.date(year=2020, month=1, day=1), # "_end_date": datetime.date(year=2020, month=1, day=7)} # with tempfile.NamedTemporaryFile("w", delete=False) as fp: # fp.write((yaml.dump(yamldict, sort_keys=False))) # name = fp.name # print(name)