Exemple #1
0
    def build_transactions(self):
        assert self.role == Role.SELLER and self.stage == Stage.LOCK, "Incorrect stage"

        # Check output range proof
        output = Output(OutputFeatures.DEFAULT_OUTPUT, self.commit,
                        self.range_proof)
        assert output.verify(self.secp), "Invalid bulletproof"

        # Build refund tx
        refund_input = Input(OutputFeatures.DEFAULT_OUTPUT, self.commit)

        public_refund_nonce_sum = PublicKey.from_combination(
            self.secp,
            [self.public_refund_nonce, self.foreign_public_refund_nonce])

        refund_signature = aggsig.add_partials(self.secp, [
            self.partial_refund_signature,
            self.foreign_partial_refund_signature
        ], public_refund_nonce_sum)
        assert aggsig.verify(
            self.secp, refund_signature, self.public_refund_excess,
            self.refund_fee_amount,
            self.refund_lock_height), "Unable to verify refund signature"

        refund_kernel = Kernel(0, self.refund_fee_amount,
                               self.refund_lock_height, None, None)
        self.refund_tx = Transaction([refund_input], [self.refund_output],
                                     [refund_kernel], self.refund_offset)
        refund_kernel.excess = self.refund_tx.sum_commitments(self.secp)
        refund_kernel.excess_signature = refund_signature
        assert self.refund_tx.verify_kernels(
            self.secp), "Unable to verify refund kernel"

        # Build multisig tx
        public_nonce_sum = PublicKey.from_combination(
            self.secp, [self.public_nonce, self.foreign_public_nonce])

        signature = aggsig.add_partials(
            self.secp,
            [self.partial_signature, self.foreign_partial_signature],
            public_nonce_sum)
        assert aggsig.verify(self.secp, signature, self.public_excess, self.fee_amount, self.lock_height), \
            "Unable to verify signature"

        kernel = Kernel(0, self.fee_amount, self.lock_height, None, None)
        self.tx = Transaction(self.inputs, [self.change_output, output],
                              [kernel], self.offset)
        kernel.excess = self.tx.sum_commitments(self.secp)
        kernel.excess_signature = signature
        assert self.tx.verify_kernels(self.secp), "Unable to verify kernel"

        self.swap_nonce = SecretKey.random(self.secp)
        self.public_swap_nonce = self.swap_nonce.to_public_key(self.secp)
def test_sig():
    # Test Grin-like signature scheme
    secp = Secp256k1(None, FLAG_ALL)
    nonce_a = SecretKey.random(secp)
    public_nonce_a = nonce_a.to_public_key(secp)
    nonce_b = SecretKey.random(secp)
    public_nonce_b = nonce_b.to_public_key(secp)
    public_nonce_sum = PublicKey.from_combination(
        secp, [public_nonce_a, public_nonce_b])
    excess_a = SecretKey.random(secp)
    public_excess_a = excess_a.to_public_key(secp)
    excess_b = SecretKey.random(secp)
    public_excess_b = excess_b.to_public_key(secp)
    public_excess_sum = PublicKey.from_combination(
        secp, [public_excess_a, public_excess_b])
    fee = randint(1, 999999)
    lock_height = randint(1, 999999)

    # Partial signature for A
    sig_a = aggsig.calculate_partial(secp, excess_a, nonce_a,
                                     public_excess_sum, public_nonce_sum, fee,
                                     lock_height)
    assert aggsig.verify_partial(secp, sig_a, public_excess_a,
                                 public_excess_sum, public_nonce_sum, fee,
                                 lock_height)

    # Partial signature for B
    sig_b = aggsig.calculate_partial(secp, excess_b, nonce_b,
                                     public_excess_sum, public_nonce_sum, fee,
                                     lock_height)
    assert aggsig.verify_partial(secp, sig_b, public_excess_b,
                                 public_excess_sum, public_nonce_sum, fee,
                                 lock_height)

    # Total signature
    sig = aggsig.add_partials(secp, [sig_a, sig_b], public_nonce_sum)
    assert aggsig.verify(secp, sig, public_excess_sum, fee, lock_height)
    rnd_sig = Signature(bytearray(urandom(64)))
    assert not aggsig.verify(secp, rnd_sig, public_excess_sum, fee,
                             lock_height)
    public_rnd = SecretKey.random(secp).to_public_key(secp)
    assert not aggsig.verify(secp, sig, public_rnd, fee, lock_height)
    assert not aggsig.verify(secp, sig, public_excess_sum, 0, lock_height)
    assert not aggsig.verify(secp, sig, public_excess_sum, fee, 0)
Exemple #3
0
    def finalize_signature(self, secp: Secp256k1) -> Signature:
        self.verify_partial_signatures(secp)
        partial_signatures = [
            x.partial_signature for x in self.participant_data
        ]
        public_nonce_sum = self.public_nonce_sum(secp)
        public_key_sum = self.public_blind_excess_sum(secp)
        signature = aggsig.add_partials(secp, partial_signatures,
                                        public_nonce_sum)
        if not aggsig.verify(secp, signature, public_key_sum, self.fee,
                             self.lock_height):
            raise InvalidSignatureException()

        return signature
    def finalize_swap(self):
        seller = self.role == Role.SELLER
        assert (seller and self.stage == Stage.DONE) or (
            not seller and self.stage == Stage.SWAP), "Incorrect stage"

        if seller:
            self.secret_lock = self.foreign_partial_swap_adaptor.scalar(
                self.secp).add(
                    self.secp,
                    self.foreign_partial_swap_signature.scalar(
                        self.secp).negate(self.secp))

            public_lock = self.secret_lock.to_public_key(self.secp)
            assert self.public_lock == public_lock, "Invalid secret lock, this should never happen"

            if self.is_ether_swap():
                self.claim = self.secp.sign_recoverable(
                    self.secret_lock, bytearray([0] * 32))
        else:
            swap_input = Input(OutputFeatures.DEFAULT_OUTPUT, self.commit)
            public_swap_nonce_sum = PublicKey.from_combination(
                self.secp,
                [self.public_swap_nonce, self.foreign_public_swap_nonce])

            swap_signature = aggsig.add_partials(self.secp, [
                self.partial_swap_signature,
                self.foreign_partial_swap_signature
            ], public_swap_nonce_sum)

            assert aggsig.verify(
                self.secp, swap_signature, self.public_swap_excess,
                self.swap_fee_amount,
                self.swap_lock_height), "Unable to verify swap signature"

            swap_kernel = Kernel(0, self.swap_fee_amount,
                                 self.swap_lock_height, None, None)
            self.swap_tx = Transaction([swap_input], [self.swap_output],
                                       [swap_kernel], self.swap_offset)
            swap_kernel.excess = self.swap_tx.sum_commitments(self.secp)
            swap_kernel.excess_signature = swap_signature
            assert self.swap_tx.verify_kernels(
                self.secp), "Unable to verify swap kernel"
Exemple #5
0
def send(node_url: str):
    global secp, wallet, proof_builder

    now = int(time())

    send_amount = GRIN_UNIT
    lock_height = 1
    refund_lock_height = lock_height + 1440  # ~24 hours
    dest_url = "http://127.0.0.1:18185"
    fluff = True

    secp = Secp256k1(None, FLAG_ALL)
    wallet = Wallet.open(secp, "wallet_a")

    print("Preparing to create multisig with {}".format(dest_url))

    input_entries = wallet.select_outputs(send_amount +
                                          tx_fee(1, 2, MILLI_GRIN_UNIT))
    fee_amount = tx_fee(len(input_entries), 2, MILLI_GRIN_UNIT)
    input_amount = sum(x.value for x in input_entries)
    change_amount = input_amount - send_amount - fee_amount
    refund_fee_amount = tx_fee(1, 1, MILLI_GRIN_UNIT)

    print("Selected {} inputs".format(len(input_entries)))

    tx = Transaction.empty(secp, 0, fee_amount, lock_height)
    refund_tx = Transaction.empty(secp, 0, refund_fee_amount,
                                  refund_lock_height)

    blind_sum = BlindSum()

    # Inputs
    inputs = []
    for entry in input_entries:
        entry.mark_locked()
        blind_sum.sub_child_key(wallet.derive_from_entry(entry))
        input = wallet.entry_to_input(entry)
        tx.add_input(secp, input)
        inputs.append(input)

    # Change output
    change_child, change_entry = wallet.create_output(change_amount)
    blind_sum.add_child_key(change_child)
    change_output = wallet.entry_to_output(change_entry)
    tx.add_output(secp, change_output)

    # Multisig output
    partial_child, partial_entry = wallet.create_output(send_amount)
    partial_entry.mark_locked()
    blind_sum.add_child_key(partial_child)
    public_partial_commit = wallet.commit_with_child_key(0, partial_child)

    # Refund output
    refund_amount = send_amount - refund_fee_amount
    refund_child, refund_entry = wallet.create_output(refund_amount)
    refund_output = wallet.entry_to_output(refund_entry)
    refund_tx.add_output(secp, refund_output)

    # Offset
    blind_sum.sub_blinding_factor(tx.offset)

    # Excess
    excess = wallet.chain.blind_sum(blind_sum).to_secret_key(secp)
    public_excess = excess.to_public_key(secp)

    # Nonce
    nonce = SecretKey.random(secp)
    public_nonce = nonce.to_public_key(secp)

    # Refund nonce
    refund_nonce = SecretKey.random(secp)
    refund_public_nonce = refund_nonce.to_public_key(secp)

    dct = {
        "amount": send_amount,
        "fee": fee_amount,
        "refund_fee": refund_fee_amount,
        "lock_height": lock_height,
        "refund_lock_height": refund_lock_height,
        "public_partial_commit": public_partial_commit.to_hex(secp).decode(),
        "public_nonce": public_nonce.to_hex(secp).decode(),
        "refund_public_nonce": refund_public_nonce.to_hex(secp).decode()
    }

    f = open("logs/{}_multisig_1.json".format(now), "w")
    f.write(json.dumps(dct, indent=2))
    f.close()

    print("Sending to receiver..")

    req = urlopen(dest_url, json.dumps(dct).encode(), 60)
    dct2 = json.loads(req.read().decode())

    f = open("logs/{}_multisig_2.json".format(now), "w")
    f.write(json.dumps(dct2, indent=2))
    f.close()

    print("Received response, processing..")

    public_partial_commit_recv = Commitment.from_hex(
        secp, dct2['public_partial_commit'].encode())
    public_partial_recv = public_partial_commit_recv.to_public_key(secp)
    public_nonce_recv = PublicKey.from_hex(secp, dct2['public_nonce'].encode())
    public_excess_recv = public_partial_commit_recv.to_public_key(secp)
    partial_signature_recv = Signature.from_hex(
        dct2['partial_signature'].encode())
    refund_public_nonce_recv = PublicKey.from_hex(
        secp, dct2['refund_public_nonce'].encode())
    refund_public_excess_recv = PublicKey.from_hex(
        secp, dct2['refund_public_excess'].encode())
    refund_partial_signature_recv = Signature.from_hex(
        dct2['refund_partial_signature'].encode())

    # Commitment
    commit = secp.commit_sum(
        [public_partial_commit_recv,
         wallet.commit(partial_entry)], [])
    print("Total commit: {}".format(commit))

    # Nonce sums
    public_nonce_sum = PublicKey.from_combination(
        secp, [public_nonce_recv, public_nonce])
    refund_public_nonce_sum = PublicKey.from_combination(
        secp, [refund_public_nonce_recv, refund_public_nonce])

    # Step 2 of bulletproof
    proof_builder = MultiPartyBulletProof(secp, partial_child,
                                          public_partial_recv, send_amount,
                                          commit)
    t_1_recv = PublicKey.from_hex(secp, dct2['t_1'].encode())
    t_2_recv = PublicKey.from_hex(secp, dct2['t_2'].encode())
    t_1, t_2 = proof_builder.step_1()
    proof_builder.fill_step_1(t_1_recv, t_2_recv)
    tau_x = proof_builder.step_2()

    dct3 = {
        "t_1": t_1.to_hex(secp).decode(),
        "t_2": t_2.to_hex(secp).decode(),
        "tau_x": tau_x.to_hex().decode()
    }

    f = open("logs/{}_multisig_3.json".format(now), "w")
    f.write(json.dumps(dct3, indent=2))
    f.close()

    print("Sending bulletproof component..")

    req2 = urlopen(dest_url, json.dumps(dct3).encode(), 60)
    dct4 = json.loads(req2.read().decode())

    print("Received response")

    f = open("logs/{}_multisig_4.json".format(now), "w")
    f.write(json.dumps(dct4, indent=2))
    f.close()

    # Bulletproof
    proof = RangeProof.from_bytearray(
        bytearray(unhexlify(dct4['proof'].encode())))
    output = Output(OutputFeatures.DEFAULT_OUTPUT, commit, proof)
    assert output.verify(secp), "Invalid bulletproof"
    tx.add_output(secp, output)
    print("Created bulletproof")

    # First we finalize the refund tx, and check its validity
    refund_input = Input(OutputFeatures.DEFAULT_OUTPUT, commit)
    refund_tx.add_input(secp, refund_input)

    # Refund excess
    refund_blind_sum = BlindSum()
    refund_blind_sum.sub_child_key(partial_child)
    refund_blind_sum.add_child_key(refund_child)
    refund_blind_sum.sub_blinding_factor(refund_tx.offset)
    refund_excess = wallet.chain.blind_sum(refund_blind_sum).to_secret_key(
        secp)
    refund_public_excess = refund_excess.to_public_key(secp)

    # Refund partial signature
    refund_partial_signature = aggsig.calculate_partial(
        secp, refund_excess, refund_nonce, refund_public_nonce_sum,
        refund_fee_amount, refund_lock_height)

    # Refund final signature
    refund_public_excess_sum = PublicKey.from_combination(
        secp, [refund_public_excess_recv, refund_public_excess])
    refund_signature = aggsig.add_partials(
        secp, [refund_partial_signature_recv, refund_partial_signature],
        refund_public_nonce_sum)
    assert aggsig.verify(secp, refund_signature, refund_public_excess_sum, refund_fee_amount, refund_lock_height), \
        "Unable to verify refund signature"
    refund_kernel = refund_tx.kernels[0]
    refund_kernel.excess = refund_tx.sum_commitments(secp)
    refund_kernel.excess_signature = refund_signature
    assert refund_tx.verify_kernels(secp), "Unable to verify refund kernel"

    print("Refund tx is valid")

    f = open("logs/{}_refund.json".format(now), "w")
    f.write(json.dumps(refund_tx.to_dict(secp), indent=2))
    f.close()

    refund_tx_wrapper = {"tx_hex": refund_tx.to_hex(secp).decode()}

    f = open("logs/{}_refund_hex.json".format(now), "w")
    f.write(json.dumps(refund_tx_wrapper, indent=2))
    f.close()

    print("Finalizing multisig tx..")

    # Partial signature
    partial_signature = aggsig.calculate_partial(secp, excess, nonce,
                                                 public_nonce_sum, fee_amount,
                                                 lock_height)

    # Final signature
    public_excess_sum = PublicKey.from_combination(
        secp, [public_excess_recv, public_excess])
    signature = aggsig.add_partials(
        secp, [partial_signature_recv, partial_signature], public_nonce_sum)
    assert aggsig.verify(secp, signature, public_excess_sum, fee_amount,
                         lock_height), "Unable to verify signature"
    kernel = tx.kernels[0]
    kernel.excess = tx.sum_commitments(secp)
    kernel.excess_signature = signature
    assert tx.verify_kernels(secp), "Unable to verify kernel"

    f = open("logs/{}_tx.json".format(now), "w")
    f.write(json.dumps(tx.to_dict(secp), indent=2))
    f.close()

    tx_wrapper = {"tx_hex": tx.to_hex(secp).decode()}

    f = open("logs/{}_tx_hex.json".format(now), "w")
    f.write(json.dumps(tx_wrapper, indent=2))
    f.close()

    print("Submitting to node..")

    urlopen("{}/v1/pool/push".format(node_url) + ("?fluff" if fluff else ""),
            json.dumps(tx_wrapper).encode(), 600)

    wallet.save()

    print("Transaction complete!")
Exemple #6
0
    def finalize_swap(self):
        seller = self.role == Role.SELLER
        assert (seller and self.stage == Stage.DONE) or (
            not seller and self.stage == Stage.SWAP), "Incorrect stage"

        if seller:
            self.secret_lock = self.foreign_partial_swap_adaptor.scalar(
                self.secp).add(
                    self.secp,
                    self.foreign_partial_swap_signature.scalar(
                        self.secp).negate(self.secp))

            public_lock = self.secret_lock.to_public_key(self.secp)
            assert self.public_lock == public_lock, "Invalid secret lock, this should never happen"

            if self.is_bitcoin_swap():
                tx = BitcoinTransaction(2, [], [], int(time()))
                input_script = self.generate_btc_script()
                for output_point in self.btc_output_points:
                    tx.add_input(
                        BitcoinInput(output_point.txid, output_point.index,
                                     input_script, bytearray(), None))
                output = BitcoinOutput(
                    1,
                    Script.p2(
                        Address.from_base58check(
                            self.swap_receive_address.encode())))
                tx.add_output(output)
                tx_size = len(tx.to_bytearray()) + 270 * len(
                    self.btc_output_points)  # estimate total tx size
                fee = 2 * tx_size  # 2 sat/B
                output.value = self.swap_amount - fee
                for i in range(len(tx.inputs)):
                    signature_a = tx.raw_signature(self.secp, i,
                                                   self.swap_cosign)
                    signature_b = tx.raw_signature(self.secp, i,
                                                   self.secret_lock)
                    prev_script = self.generate_btc_script()

                    script_sig = bytearray()
                    script_sig.append(OP_FALSE)
                    script_sig.extend(script_write_bytes(len(signature_a)))
                    script_sig.extend(signature_a)
                    script_sig.extend(script_write_bytes(len(signature_b)))
                    script_sig.extend(signature_b)
                    script_sig.append(OP_FALSE)
                    script_sig.extend(script_write_bytes(len(prev_script)))
                    script_sig.extend(prev_script)
                    tx.inputs[i].script_sig = script_sig
                self.claim = hexlify(tx.to_bytearray())

            if self.is_ether_swap():
                self.claim = self.secp.sign_recoverable(
                    self.secret_lock, bytearray([0] * 32))
        else:
            swap_input = Input(OutputFeatures.DEFAULT_OUTPUT, self.commit)
            public_swap_nonce_sum = PublicKey.from_combination(
                self.secp,
                [self.public_swap_nonce, self.foreign_public_swap_nonce])

            swap_signature = aggsig.add_partials(self.secp, [
                self.partial_swap_signature,
                self.foreign_partial_swap_signature
            ], public_swap_nonce_sum)

            assert aggsig.verify(
                self.secp, swap_signature, self.public_swap_excess,
                self.swap_fee_amount,
                self.swap_lock_height), "Unable to verify swap signature"

            swap_kernel = Kernel(0, self.swap_fee_amount,
                                 self.swap_lock_height, None, None)
            self.swap_tx = Transaction([swap_input], [self.swap_output],
                                       [swap_kernel], self.swap_offset)
            swap_kernel.excess = self.swap_tx.sum_commitments(self.secp)
            swap_kernel.excess_signature = swap_signature
            assert self.swap_tx.verify_kernels(
                self.secp), "Unable to verify swap kernel"
Exemple #7
0
 def verify(self, secp: Secp256k1) -> bool:
     return aggsig.verify(secp, self.excess_signature,
                          self.excess.to_public_key(secp), self.fee,
                          self.lock_height)