Exemple #1
0
	def ImuUpdate(self, imu_samples):
		""" Update NavState using IMU factor """
		# Reset integration
		imu_accum = gtsam.PreintegratedImuMeasurements(self.imu_preint_params)
		# Integrate IMU measurements at measurement time
		for sample in imu_samples:
			imu_accum.integrateMeasurement(sample[1], sample[2], sample[3])
		# Compute NavState
		predicted_nav_state = imu_accum.predict(gtsam.NavState(self.current_global_pose, self.current_global_vel), self.current_bias)
		# Add IMU factor
		imu_factor = gtsam.ImuFactor(
			self.poseKey-1, self.velKey-1,
			self.poseKey, self.velKey,
			self.biasKey, imu_accum)
		self.new_factors.add(imu_factor)
		return predicted_nav_state
    # "U" means "Z axis points up"; "MakeSharedD" would mean "Z axis points along the gravity"
    preintegration_params = gtsam.PreintegrationParams.MakeSharedU(
        10)  # 10 is the gravity force
    # Realistic noise parameters
    kGyroSigma = math.radians(0.5) / 60  # 0.5 degree ARW
    kAccelSigma = 0.1 / 60  # 10 cm VRW
    preintegration_params.setGyroscopeCovariance(kGyroSigma**2 *
                                                 np.identity(3, np.float))
    preintegration_params.setAccelerometerCovariance(kAccelSigma**2 *
                                                     np.identity(3, np.float))
    preintegration_params.setIntegrationCovariance(0.0000001**2 *
                                                   np.identity(3, np.float))
    params.preintegration_params = preintegration_params

    # The stateful class that is responsible for preintegration
    current_preintegrated_IMU = gtsam.PreintegratedImuMeasurements(
        params.preintegration_params, params.IMU_bias)

    # The certainty (covariance) of the initial position estimate
    # "Isotropic" means diagonal with equal sigmas
    params.initial_pose_covariance = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
    params.initial_velocity_covariance = gtsam.noiseModel_Isotropic.Sigma(
        3, 0.1)

    ###############################    Build the factor graph   ####################################

    factor_graph = gtsam.NonlinearFactorGraph()

    # A technical hack for defining variable names in GTSAM python bindings
    def symbol(letter, index):
        return int(gtsam.symbol(ord(letter), index))
Exemple #3
0
    def run(self):
        graph = gtsam.NonlinearFactorGraph()

        # initialize data structure for pre-integrated IMU measurements
        pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)

        H9 = gtsam.OptionalJacobian9()

        T = 12
        num_poses = T + 1  # assumes 1 factor per second
        initial = gtsam.Values()
        initial.insert(BIAS_KEY, self.actualBias)
        for i in range(num_poses):
            state_i = self.scenario.navState(float(i))
            initial.insert(X(i), state_i.pose())
            initial.insert(V(i), state_i.velocity())

        # simulate the loop
        i = 0  # state index
        actual_state_i = self.scenario.navState(0)
        for k, t in enumerate(np.arange(0, T, self.dt)):
            # get measurements and add them to PIM
            measuredOmega = self.runner.measuredAngularVelocity(t)
            measuredAcc = self.runner.measuredSpecificForce(t)
            pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)

            # Plot IMU many times
            if k % 10 == 0:
                self.plotImu(t, measuredOmega, measuredAcc)

            # Plot every second
            if k % int(1 / self.dt) == 0:
                self.plotGroundTruthPose(t)

            # create IMU factor every second
            if (k + 1) % int(1 / self.dt) == 0:
                factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
                                         BIAS_KEY, pim)
                graph.push_back(factor)
                if True:
                    print(factor)
                    H2 = gtsam.OptionalJacobian96()
                    print(pim.predict(actual_state_i, self.actualBias, H9, H2))
                pim.resetIntegration()
                actual_state_i = self.scenario.navState(t + self.dt)
                i += 1

        # add priors on beginning and end
        self.addPrior(0, graph)
        self.addPrior(num_poses - 1, graph)

        # optimize using Levenberg-Marquardt optimization
        params = gtsam.LevenbergMarquardtParams()
        params.setVerbosityLM("SUMMARY")
        optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
        result = optimizer.optimize()

        # Calculate and print marginal covariances
        marginals = gtsam.Marginals(graph, result)
        print("Covariance on bias:\n", marginals.marginalCovariance(BIAS_KEY))
        for i in range(num_poses):
            print("Covariance on pose {}:\n{}\n".format(
                i, marginals.marginalCovariance(X(i))))
            print("Covariance on vel {}:\n{}\n".format(
                i, marginals.marginalCovariance(V(i))))

        # Plot resulting poses
        i = 0
        while result.exists(X(i)):
            pose_i = result.atPose3(X(i))
            plotPose3(POSES_FIG, pose_i, 0.1)
            i += 1
        print(result.atConstantBias(BIAS_KEY))

        plt.ioff()
        plt.show()
Exemple #4
0
def optimize(gps_measurements: List[GpsMeasurement],
             imu_measurements: List[ImuMeasurement],
             sigma_init_x: gtsam.noiseModel.Diagonal,
             sigma_init_v: gtsam.noiseModel.Diagonal,
             sigma_init_b: gtsam.noiseModel.Diagonal,
             noise_model_gps: gtsam.noiseModel.Diagonal,
             kitti_calibration: KittiCalibration, first_gps_pose: int,
             gps_skip: int) -> gtsam.ISAM2:
    """Run ISAM2 optimization on the measurements."""
    # Set initial conditions for the estimated trajectory
    # initial pose is the reference frame (navigation frame)
    current_pose_global = Pose3(gtsam.Rot3(),
                                gps_measurements[first_gps_pose].position)

    # the vehicle is stationary at the beginning at position 0,0,0
    current_velocity_global = np.zeros(3)
    current_bias = gtsam.imuBias.ConstantBias()  # init with zero bias

    imu_params = getImuParams(kitti_calibration)

    # Set ISAM2 parameters and create ISAM2 solver object
    isam_params = gtsam.ISAM2Params()
    isam_params.setFactorization("CHOLESKY")
    isam_params.relinearizeSkip = 10

    isam = gtsam.ISAM2(isam_params)

    # Create the factor graph and values object that will store new factors and
    # values to add to the incremental graph
    new_factors = gtsam.NonlinearFactorGraph()
    # values storing the initial estimates of new nodes in the factor graph
    new_values = gtsam.Values()

    # Main loop:
    # (1) we read the measurements
    # (2) we create the corresponding factors in the graph
    # (3) we solve the graph to obtain and optimal estimate of robot trajectory
    print("-- Starting main loop: inference is performed at each time step, "
          "but we plot trajectory every 10 steps")

    j = 0
    included_imu_measurement_count = 0

    for i in range(first_gps_pose, len(gps_measurements)):
        # At each non=IMU measurement we initialize a new node in the graph
        current_pose_key = X(i)
        current_vel_key = V(i)
        current_bias_key = B(i)
        t = gps_measurements[i].time

        if i == first_gps_pose:
            # Create initial estimate and prior on initial pose, velocity, and biases
            new_values.insert(current_pose_key, current_pose_global)
            new_values.insert(current_vel_key, current_velocity_global)
            new_values.insert(current_bias_key, current_bias)

            new_factors.addPriorPose3(current_pose_key, current_pose_global,
                                      sigma_init_x)
            new_factors.addPriorVector(current_vel_key,
                                       current_velocity_global, sigma_init_v)
            new_factors.addPriorConstantBias(current_bias_key, current_bias,
                                             sigma_init_b)
        else:
            t_previous = gps_measurements[i - 1].time

            # Summarize IMU data between the previous GPS measurement and now
            current_summarized_measurement = gtsam.PreintegratedImuMeasurements(
                imu_params, current_bias)

            while (j < len(imu_measurements)
                   and imu_measurements[j].time <= t):
                if imu_measurements[j].time >= t_previous:
                    current_summarized_measurement.integrateMeasurement(
                        imu_measurements[j].accelerometer,
                        imu_measurements[j].gyroscope, imu_measurements[j].dt)
                    included_imu_measurement_count += 1
                j += 1

            # Create IMU factor
            previous_pose_key = X(i - 1)
            previous_vel_key = V(i - 1)
            previous_bias_key = B(i - 1)

            new_factors.push_back(
                gtsam.ImuFactor(previous_pose_key, previous_vel_key,
                                current_pose_key, current_vel_key,
                                previous_bias_key,
                                current_summarized_measurement))

            # Bias evolution as given in the IMU metadata
            sigma_between_b = gtsam.noiseModel.Diagonal.Sigmas(
                np.asarray([
                    np.sqrt(included_imu_measurement_count) *
                    kitti_calibration.accelerometer_bias_sigma
                ] * 3 + [
                    np.sqrt(included_imu_measurement_count) *
                    kitti_calibration.gyroscope_bias_sigma
                ] * 3))

            new_factors.push_back(
                gtsam.BetweenFactorConstantBias(previous_bias_key,
                                                current_bias_key,
                                                gtsam.imuBias.ConstantBias(),
                                                sigma_between_b))

            # Create GPS factor
            gps_pose = Pose3(current_pose_global.rotation(),
                             gps_measurements[i].position)
            if (i % gps_skip) == 0:
                new_factors.addPriorPose3(current_pose_key, gps_pose,
                                          noise_model_gps)
                new_values.insert(current_pose_key, gps_pose)

                print(f"############ POSE INCLUDED AT TIME {t} ############")
                print(gps_pose.translation(), "\n")
            else:
                new_values.insert(current_pose_key, current_pose_global)

            # Add initial values for velocity and bias based on the previous
            # estimates
            new_values.insert(current_vel_key, current_velocity_global)
            new_values.insert(current_bias_key, current_bias)

            # Update solver
            # =======================================================================
            # We accumulate 2*GPSskip GPS measurements before updating the solver at
            # first so that the heading becomes observable.
            if i > (first_gps_pose + 2 * gps_skip):
                print(f"############ NEW FACTORS AT TIME {t:.6f} ############")
                new_factors.print()

                isam.update(new_factors, new_values)

                # Reset the newFactors and newValues list
                new_factors.resize(0)
                new_values.clear()

                # Extract the result/current estimates
                result = isam.calculateEstimate()

                current_pose_global = result.atPose3(current_pose_key)
                current_velocity_global = result.atVector(current_vel_key)
                current_bias = result.atConstantBias(current_bias_key)

                print(f"############ POSE AT TIME {t} ############")
                current_pose_global.print()
                print("\n")

    return isam
Exemple #5
0
def IMU_example():
    """Run iSAM 2 example with IMU factor."""

    # Start with a camera on x-axis looking at origin
    radius = 30
    up = gtsam.Point3(0, 0, 1)
    target = gtsam.Point3(0, 0, 0)
    position = gtsam.Point3(radius, 0, 0)
    camera = gtsam.SimpleCamera.Lookat(position, target, up, gtsam.Cal3_S2())
    pose_0 = camera.pose()

    # Create the set of ground-truth landmarks and poses
    angular_velocity = math.radians(180)  # rad/sec
    delta_t = 1.0/18  # makes for 10 degrees per step

    angular_velocity_vector = vector3(0, -angular_velocity, 0)
    linear_velocity_vector = vector3(radius * angular_velocity, 0, 0)
    scenario = gtsam.ConstantTwistScenario(
        angular_velocity_vector, linear_velocity_vector, pose_0)

    # Create a factor graph
    newgraph = gtsam.NonlinearFactorGraph()

    # Create (incremental) ISAM2 solver
    isam = gtsam.ISAM2()

    # Create the initial estimate to the solution
    # Intentionally initialize the variables off from the ground truth
    initialEstimate = gtsam.Values()

    # Add a prior on pose x0. This indirectly specifies where the origin is.
    # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
    noise = gtsam.noiseModel_Diagonal.Sigmas(
        np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
    newgraph.push_back(gtsam.PriorFactorPose3(X(0), pose_0, noise))

    # Add imu priors
    biasKey = gtsam.symbol(ord('b'), 0)
    biasnoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
    biasprior = gtsam.PriorFactorConstantBias(biasKey, gtsam.imuBias_ConstantBias(),
                                              biasnoise)
    newgraph.push_back(biasprior)
    initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
    velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)

    # Calculate with correct initial velocity
    n_velocity = vector3(0, angular_velocity * radius, 0)
    velprior = gtsam.PriorFactorVector(V(0), n_velocity, velnoise)
    newgraph.push_back(velprior)
    initialEstimate.insert(V(0), n_velocity)

    accum = gtsam.PreintegratedImuMeasurements(PARAMS)

    # Simulate poses and imu measurements, adding them to the factor graph
    for i in range(80):
        t = i * delta_t  # simulation time
        if i == 0:  # First time add two poses
            pose_1 = scenario.pose(delta_t)
            initialEstimate.insert(X(0), pose_0.compose(DELTA))
            initialEstimate.insert(X(1), pose_1.compose(DELTA))
        elif i >= 2:  # Add more poses as necessary
            pose_i = scenario.pose(t)
            initialEstimate.insert(X(i), pose_i.compose(DELTA))

        if i > 0:
            # Add Bias variables periodically
            if i % 5 == 0:
                biasKey += 1
                factor = gtsam.BetweenFactorConstantBias(
                    biasKey - 1, biasKey, gtsam.imuBias_ConstantBias(), BIAS_COVARIANCE)
                newgraph.add(factor)
                initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())

            # Predict acceleration and gyro measurements in (actual) body frame
            nRb = scenario.rotation(t).matrix()
            bRn = np.transpose(nRb)
            measuredAcc = scenario.acceleration_b(t) - np.dot(bRn, n_gravity)
            measuredOmega = scenario.omega_b(t)
            accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)

            # Add Imu Factor
            imufac = gtsam.ImuFactor(
                X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
            newgraph.add(imufac)

            # insert new velocity, which is wrong
            initialEstimate.insert(V(i), n_velocity)
            accum.resetIntegration()

        # Incremental solution
        isam.update(newgraph, initialEstimate)
        result = isam.calculateEstimate()
        ISAM2_plot(result)

        # reset
        newgraph = gtsam.NonlinearFactorGraph()
        initialEstimate.clear()
Exemple #6
0
    def run(self,
            T: int = 12,
            compute_covariances: bool = False,
            verbose: bool = True):
        """
        Main runner.

        Args:
            T: Total trajectory time.
            compute_covariances: Flag indicating whether to compute marginal covariances.
            verbose: Flag indicating if printing should be verbose.
        """
        graph = gtsam.NonlinearFactorGraph()

        # initialize data structure for pre-integrated IMU measurements
        pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)

        num_poses = T  # assumes 1 factor per second
        initial = gtsam.Values()
        initial.insert(BIAS_KEY, self.actualBias)

        # simulate the loop
        i = 0  # state index
        initial_state_i = self.scenario.navState(0)
        initial.insert(X(i), initial_state_i.pose())
        initial.insert(V(i), initial_state_i.velocity())

        # add prior on beginning
        self.addPrior(0, graph)

        for k, t in enumerate(np.arange(0, T, self.dt)):
            # get measurements and add them to PIM
            measuredOmega = self.runner.measuredAngularVelocity(t)
            measuredAcc = self.runner.measuredSpecificForce(t)
            pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)

            # Plot IMU many times
            if k % 10 == 0:
                self.plotImu(t, measuredOmega, measuredAcc)

            if (k + 1) % int(1 / self.dt) == 0:
                # Plot every second
                self.plotGroundTruthPose(t, scale=1)
                plt.title("Ground Truth Trajectory")

                # create IMU factor every second
                factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
                                         BIAS_KEY, pim)
                graph.push_back(factor)

                if verbose:
                    print(factor)
                    print(pim.predict(initial_state_i, self.actualBias))

                pim.resetIntegration()

                rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1)
                translationNoise = gtsam.Point3(*np.random.randn(3) * 1)
                poseNoise = gtsam.Pose3(rotationNoise, translationNoise)

                actual_state_i = self.scenario.navState(t + self.dt)
                print("Actual state at {0}:\n{1}".format(
                    t + self.dt, actual_state_i))

                noisy_state_i = gtsam.NavState(
                    actual_state_i.pose().compose(poseNoise),
                    actual_state_i.velocity() + np.random.randn(3) * 0.1)

                initial.insert(X(i + 1), noisy_state_i.pose())
                initial.insert(V(i + 1), noisy_state_i.velocity())
                i += 1

        # add priors on end
        self.addPrior(num_poses - 1, graph)

        initial.print("Initial values:")

        result = self.optimize(graph, initial)

        result.print("Optimized values:")
        print("------------------")
        print(graph.error(initial))
        print(graph.error(result))
        print("------------------")

        if compute_covariances:
            # Calculate and print marginal covariances
            marginals = gtsam.Marginals(graph, result)
            print("Covariance on bias:\n",
                  marginals.marginalCovariance(BIAS_KEY))
            for i in range(num_poses):
                print("Covariance on pose {}:\n{}\n".format(
                    i, marginals.marginalCovariance(X(i))))
                print("Covariance on vel {}:\n{}\n".format(
                    i, marginals.marginalCovariance(V(i))))

        self.plot(result, show=True)
Exemple #7
0
    def add_imu_measurements(self,
                             measured_poses,
                             measured_acc,
                             measured_omega,
                             measured_vel,
                             delta_t,
                             n_skip,
                             initial_poses=None):

        n_frames = measured_poses.shape[0]

        # Check if sizes are correct
        assert measured_poses.shape[0] == n_frames
        assert measured_acc.shape[0] == n_frames
        assert measured_vel.shape[0] == n_frames

        # Pose prior
        pose_key = X(0)
        pose_noise = gtsam.noiseModel.Diagonal.Sigmas(
            np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.2]))
        pose_0 = gtsam.Pose3(measured_poses[0])
        self.graph.push_back(
            gtsam.PriorFactorPose3(pose_key, pose_0, pose_noise))

        self.initial_estimate.insert(pose_key, gtsam.Pose3(measured_poses[0]))

        # IMU prior
        bias_key = B(0)
        bias_noise = gtsam.noiseModel.Isotropic.Sigma(6, 0.5)
        self.graph.push_back(
            gtsam.PriorFactorConstantBias(bias_key,
                                          gtsam.imuBias.ConstantBias(),
                                          bias_noise))

        self.initial_estimate.insert(bias_key, gtsam.imuBias.ConstantBias())

        # Velocity prior
        velocity_key = V(0)
        velocity_noise = gtsam.noiseModel.Isotropic.Sigma(3, .5)
        velocity_0 = measured_vel[0]
        self.graph.push_back(
            gtsam.PriorFactorVector(velocity_key, velocity_0, velocity_noise))

        self.initial_estimate.insert(velocity_key, velocity_0)

        # Preintegrator
        accum = gtsam.PreintegratedImuMeasurements(self.IMU_PARAMS)

        # Add measurements to factor graph
        for i in range(1, n_frames):
            accum.integrateMeasurement(measured_acc[i], measured_omega[i],
                                       delta_t[i - 1])
            if i % n_skip == 0:
                pose_key += 1
                DELTA = gtsam.Pose3(
                    gtsam.Rot3.Rodrigues(0, 0, 0.1 * np.random.randn()),
                    gtsam.Point3(4 * np.random.randn(), 4 * np.random.randn(),
                                 4 * np.random.randn()))
                self.initial_estimate.insert(
                    pose_key,
                    gtsam.Pose3(measured_poses[i]).compose(DELTA))

                velocity_key += 1
                self.initial_estimate.insert(velocity_key, measured_vel[i])

                bias_key += 1
                self.graph.add(
                    gtsam.BetweenFactorConstantBias(
                        bias_key - 1, bias_key, gtsam.imuBias.ConstantBias(),
                        self.BIAS_COVARIANCE))
                self.initial_estimate.insert(bias_key,
                                             gtsam.imuBias.ConstantBias())

                # Add IMU Factor
                self.graph.add(
                    gtsam.ImuFactor(pose_key - 1, velocity_key - 1, pose_key,
                                    velocity_key, bias_key, accum))

                # Reset preintegration
                accum.resetIntegration()
Exemple #8
0
    def run(self, T=12, compute_covariances=False, verbose=True):
        graph = gtsam.NonlinearFactorGraph()

        # initialize data structure for pre-integrated IMU measurements
        pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)

        # T = 12
        num_poses = T  # assumes 1 factor per second
        initial = gtsam.Values()
        initial.insert(BIAS_KEY, self.actualBias)

        # simulate the loop
        i = 0  # state index
        initial_state_i = self.scenario.navState(0)
        initial.insert(X(i), initial_state_i.pose())
        initial.insert(V(i), initial_state_i.velocity())

        # add prior on beginning
        self.addPrior(0, graph)

        gtNavStates = []
        predictedNavStates = []
        integrationTime = []
        for k, t in enumerate(np.arange(0, T, self.dt)):
            # get measurements and add them to PIM
            measuredOmega = self.runner.measuredAngularVelocity(t)
            measuredAcc = self.runner.measuredSpecificForce(t)
            start = time()
            pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
            integrationTime.append(time() - start)
            # Plot IMU many times
            if k % 10 == 0 and not DISABLE_VISUAL:
                self.plotImu(t, measuredOmega, measuredAcc)

            if (k + 1) % int(1 / self.dt) == 0:
                # Plot every second
                gtNavState = self.plotGroundTruthPose(t, scale=0.3)
                gtNavStates.append(gtNavState)
                plt.title("Ground Truth + Estimated Trajectory")

                # create IMU factor every second
                factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
                                         BIAS_KEY, pim)
                graph.push_back(factor)

                if verbose:
                    print(factor)
                    print(pim.predict(initial_state_i, self.actualBias))

                pim.resetIntegration()

                rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1 * 1)
                translationNoise = gtsam.Point3(*np.random.randn(3) * 1 * 1)
                poseNoise = gtsam.Pose3(rotationNoise, translationNoise)

                actual_state_i = self.scenario.navState(t + self.dt)
                if not DISABLE_VISUAL:
                    print("Actual state at {0}:\n{1}".format(
                        t + self.dt, actual_state_i))

                noisy_state_i = gtsam.NavState(
                    actual_state_i.pose().compose(poseNoise),
                    actual_state_i.velocity() + np.random.randn(3) * 0.1)

                initial.insert(X(i + 1), noisy_state_i.pose())
                initial.insert(V(i + 1), noisy_state_i.velocity())
                i += 1

        # add priors on end
        self.addPrior(num_poses - 1, graph)

        initial.print_("Initial values:")

        # optimize using Levenberg-Marquardt optimization
        params = gtsam.LevenbergMarquardtParams()
        params.setVerbosityLM("SUMMARY")
        optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
        result = optimizer.optimize()

        result.print_("Optimized values:")

        if compute_covariances:
            # Calculate and print marginal covariances
            marginals = gtsam.Marginals(graph, result)
            print("Covariance on bias:\n",
                  marginals.marginalCovariance(BIAS_KEY))
            for i in range(num_poses):
                print("Covariance on pose {}:\n{}\n".format(
                    i, marginals.marginalCovariance(X(i))))
                print("Covariance on vel {}:\n{}\n".format(
                    i, marginals.marginalCovariance(V(i))))

        # Plot resulting poses
        i = 0
        while result.exists(X(i)):
            pose_i = result.atPose3(X(i))
            predictedNavStates.append(pose_i)
            if not DISABLE_VISUAL:
                plot_pose3(POSES_FIG, pose_i, 1)
            i += 1
        # plt.title("Estimated Trajectory")

        if not DISABLE_VISUAL:
            gtsam.utils.plot.set_axes_equal(POSES_FIG)

        print("Bias Values", result.atConstantBias(BIAS_KEY))

        ATE = []
        # import ipdb; ipdb.set_trace()
        for gt, pred in zip(gtNavStates, predictedNavStates[1:]):
            delta = gt.inverse().compose(pred)
            ATE.append(np.linalg.norm(delta.Logmap(delta))**2)
        print("ATE={}".format(np.sqrt(np.mean(ATE))))

        print("Run time={}".format(np.median(integrationTime)))
        plt.ioff()
        plt.show()
Exemple #9
0
def IMU_example():
    """Run iSAM 2 example with IMU factor."""

    # Start with a camera on x-axis looking at origin
    radius = 30
    camera = get_camera(radius)
    pose_0 = camera.pose()

    delta_t = 1.0 / 18  # makes for 10 degrees per step
    angular_velocity = math.radians(180)  # rad/sec
    scenario = get_scenario(radius, pose_0, angular_velocity, delta_t)

    PARAMS, BIAS_COVARIANCE, DELTA = preintegration_parameters()

    # Create a factor graph
    graph = NonlinearFactorGraph()

    # Create (incremental) ISAM2 solver
    isam = ISAM2()

    # Create the initial estimate to the solution
    # Intentionally initialize the variables off from the ground truth
    initialEstimate = Values()

    # Add a prior on pose x0. This indirectly specifies where the origin is.
    # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
    noise = gtsam.noiseModel.Diagonal.Sigmas(
        np.array([0.1, 0.1, 0.1, 0.3, 0.3, 0.3]))
    graph.push_back(PriorFactorPose3(X(0), pose_0, noise))

    # Add imu priors
    biasKey = B(0)
    biasnoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
    biasprior = PriorFactorConstantBias(biasKey, gtsam.imuBias.ConstantBias(),
                                        biasnoise)
    graph.push_back(biasprior)
    initialEstimate.insert(biasKey, gtsam.imuBias.ConstantBias())
    velnoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)

    # Calculate with correct initial velocity
    n_velocity = vector3(0, angular_velocity * radius, 0)
    velprior = PriorFactorVector(V(0), n_velocity, velnoise)
    graph.push_back(velprior)
    initialEstimate.insert(V(0), n_velocity)

    accum = gtsam.PreintegratedImuMeasurements(PARAMS)

    # Simulate poses and imu measurements, adding them to the factor graph
    for i in range(80):
        t = i * delta_t  # simulation time
        if i == 0:  # First time add two poses
            pose_1 = scenario.pose(delta_t)
            initialEstimate.insert(X(0), pose_0.compose(DELTA))
            initialEstimate.insert(X(1), pose_1.compose(DELTA))
        elif i >= 2:  # Add more poses as necessary
            pose_i = scenario.pose(t)
            initialEstimate.insert(X(i), pose_i.compose(DELTA))

        if i > 0:
            # Add Bias variables periodically
            if i % 5 == 0:
                biasKey += 1
                factor = BetweenFactorConstantBias(
                    biasKey - 1, biasKey, gtsam.imuBias.ConstantBias(),
                    BIAS_COVARIANCE)
                graph.add(factor)
                initialEstimate.insert(biasKey, gtsam.imuBias.ConstantBias())

            # Predict acceleration and gyro measurements in (actual) body frame
            nRb = scenario.rotation(t).matrix()
            bRn = np.transpose(nRb)
            measuredAcc = scenario.acceleration_b(t) - np.dot(bRn, n_gravity)
            measuredOmega = scenario.omega_b(t)
            accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)

            # Add Imu Factor
            imufac = ImuFactor(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
            graph.add(imufac)

            # insert new velocity, which is wrong
            initialEstimate.insert(V(i), n_velocity)
            accum.resetIntegration()

        # Incremental solution
        isam.update(graph, initialEstimate)
        result = isam.calculateEstimate()
        plot.plot_incremental_trajectory(0,
                                         result,
                                         start=i,
                                         scale=3,
                                         time_interval=0.01)

        # reset
        graph = NonlinearFactorGraph()
        initialEstimate.clear()

    plt.show()
Exemple #10
0
	def __init__(self, params):
		""" Initialize variables """
		self.imu_meas_predict = [] # IMU measurements for pose prediction
		self.imu_opt_meas = [] # IMU measurements for pose prediction between measurement updates
		self.imu_samples = [] # imu samples
		self.opt_meas = [] # optimizes measurements
		self.__opt_meas_buffer_time = params['opt_meas_buffer_time']

		""" IMU Preintegration """
		# IMU preintegration parameters
		self.imu_preint_params = gtsam.PreintegrationParams(np.asarray(params['g']))
		self.imu_preint_params.setAccelerometerCovariance(np.eye(3) * np.power(params['acc_nd_sigma'], 2))
		self.imu_preint_params.setGyroscopeCovariance(np.eye(3) * np.power(params['acc_nd_sigma'], 2))
		self.imu_preint_params.setIntegrationCovariance(np.eye(3) * params['int_cov_sigma']**2)
		self.imu_preint_params.setUse2ndOrderCoriolis(params['setUse2ndOrderCoriolis'])
		self.imu_preint_params.setOmegaCoriolis(np.array(params['omega_coriolis']))

		""" Initialize Parameters """
		# ISAM2 initialization
		isam2_params = gtsam.ISAM2Params()
		isam2_params.setRelinearizeThreshold(params['relinearize_th'])
		isam2_params.setRelinearizeSkip(params['relinearize_skip'])
		isam2_params.setFactorization(params['factorization'])
		# self.isam2 = gtsam.ISAM2(isam2_params)
		self.isam2 = gtsam.ISAM2()
		self.new_factors = gtsam.NonlinearFactorGraph()
		self.new_initial_ests = gtsam.Values()
		self.min_imu_sample = 2 # minimum imu sample count needed for integration
		# ISAM2 keys
		self.poseKey = gtsam.symbol(ord('x'), 0)
		self.velKey = gtsam.symbol(ord('v'), 0)
		self.biasKey = gtsam.symbol(ord('b'), 0)

		""" Set initial variables """
		# Initial state
		self.last_opt_time = self.current_time = 0
		self.current_global_pose = numpy_pose_to_gtsam(
			params['init_pos'], 
			params['init_ori'])
		self.current_global_vel = np.asarray(
			params['init_vel'])
		self.current_bias = gtsam.imuBias_ConstantBias(
			np.asarray(params['init_acc_bias']),
			np.asarray(params['init_gyr_bias']))
		self.imu_accum = gtsam.PreintegratedImuMeasurements(self.imu_preint_params)
		# uncertainty of the initial state
		self.init_pos_cov = gtsam.noiseModel_Isotropic.Sigmas(np.array([
			params['init_ori_cov'], params['init_ori_cov'], params['init_ori_cov'],
			params['init_pos_cov'], params['init_pos_cov'], params['init_pos_cov']]))
		self.init_vel_cov = gtsam.noiseModel_Isotropic.Sigmas(np.array([
			params['init_vel_cov'], params['init_vel_cov'], params['init_vel_cov']]))
		self.init_bias_cov = gtsam.noiseModel_Isotropic.Sigmas(np.array([
			params['init_acc_bias_cov'], params['init_acc_bias_cov'], params['init_acc_bias_cov'],
			params['init_gyr_bias_cov'], params['init_gyr_bias_cov'], params['init_gyr_bias_cov']]))
		# measurement noise
		self.dvl_cov = gtsam.noiseModel_Isotropic.Sigmas(np.asarray(
			params['dvl_cov']))
		self.bar_cov = gtsam.noiseModel_Isotropic.Sigmas(np.asarray(
			params['bar_cov']))
		self.bias_cov = gtsam.noiseModel_Isotropic.Sigmas(np.concatenate((
			params['sigma_acc_bias_evol'],
			params['sigma_gyr_bias_evol'])))

		""" Set initial state """
		# Initial factors
		prior_pose_factor = gtsam.PriorFactorPose3(
			self.poseKey,
			self.current_global_pose,
			self.init_pos_cov)
		self.new_factors.add(prior_pose_factor)
		prior_vel_factor = gtsam.PriorFactorVector(
			self.velKey,
			self.current_global_vel,
			self.init_vel_cov)
		self.new_factors.add(prior_vel_factor)
		prior_bias_factor = gtsam.PriorFactorConstantBias(
			self.biasKey,
			self.current_bias,
			self.init_bias_cov)
		self.new_factors.add(prior_bias_factor)
		# Initial estimates
		self.new_initial_ests.insert(self.poseKey, self.current_global_pose)
		self.new_initial_ests.insert(self.velKey, self.current_global_vel)
		self.new_initial_ests.insert(self.biasKey, self.current_bias)