def test_arithmetic_mean_scoring_function():
    # define a scoring function returning the mean from two mock functions
    # and assert that it returns the correct values.

    weight_1 = 0.4
    weight_2 = 0.6

    mock_values_1 = [0.232, 0.665, 0.0, 1.0, 0.993]
    mock_values_2 = [0.010, 0.335, 0.8, 0.3, 0.847]

    mock_1 = MockScoringFunction(mock_values_1)
    mock_2 = MockScoringFunction(mock_values_2)

    scoring_function = ArithmeticMeanScoringFunction(
        scoring_functions=[mock_1, mock_2], weights=[weight_1, weight_2])

    smiles = ['CC'] * 5

    scores = scoring_function.score_list(smiles)
    expected = [
        weight_1 * v1 + weight_2 * v2
        for v1, v2 in zip(mock_values_1, mock_values_2)
    ]

    assert scores == expected
Exemple #2
0
def hard_osimertinib() -> GoalDirectedBenchmark:
    smiles = 'COc1cc(N(C)CCN(C)C)c(NC(=O)C=C)cc1Nc2nccc(n2)c3cn(C)c4ccccc34'

    modifier = ClippedScoreModifier(upper_x=0.8)
    similar_to_osimertinib = TanimotoScoringFunction(smiles,
                                                     fp_type='FCFP4',
                                                     score_modifier=modifier)

    but_not_too_similar = TanimotoScoringFunction(
        smiles,
        fp_type='ECFP6',
        score_modifier=MinGaussianModifier(mu=0.85, sigma=0.1))

    tpsa_over_100 = RdkitScoringFunction(descriptor=tpsa,
                                         score_modifier=MaxGaussianModifier(
                                             mu=100, sigma=10))

    logP_scoring = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MinGaussianModifier(
                                            mu=1, sigma=1))

    make_osimertinib_great_again = ArithmeticMeanScoringFunction([
        similar_to_osimertinib, but_not_too_similar, tpsa_over_100,
        logP_scoring
    ])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Osimertinib MPO',
                                 objective=make_osimertinib_great_again,
                                 contribution_specification=specification)
Exemple #3
0
def hard_cobimetinib() -> GoalDirectedBenchmark:
    smiles = 'OC1(CN(C1)C(=O)C1=C(NC2=C(F)C=C(I)C=C2)C(F)=C(F)C=C1)C1CCCCN1'

    modifier = ClippedScoreModifier(upper_x=0.7)
    os_tf = TanimotoScoringFunction(smiles,
                                    fp_type='FCFP4',
                                    score_modifier=modifier)
    os_ap = TanimotoScoringFunction(smiles,
                                    fp_type='ECFP6',
                                    score_modifier=MinGaussianModifier(
                                        mu=0.75, sigma=0.1))

    rot_b = RdkitScoringFunction(descriptor=num_rotatable_bonds,
                                 score_modifier=MinGaussianModifier(mu=3,
                                                                    sigma=1))

    rings = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MaxGaussianModifier(mu=3,
                                                                    sigma=1))

    t_cns = ArithmeticMeanScoringFunction(
        [os_tf, os_ap, rot_b, rings,
         CNS_MPO_ScoringFunction()])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Cobimetinib MPO',
                                 objective=t_cns,
                                 contribution_specification=specification)
Exemple #4
0
def weird_physchem() -> GoalDirectedBenchmark:
    min_bertz = RdkitScoringFunction(descriptor=bertz,
                                     score_modifier=MaxGaussianModifier(
                                         mu=1500, sigma=200))

    mol_under_400 = RdkitScoringFunction(descriptor=mol_weight,
                                         score_modifier=MinGaussianModifier(
                                             mu=400, sigma=40))

    aroma = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MinGaussianModifier(mu=3,
                                                                    sigma=1))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'),
                                    score_modifier=GaussianModifier(mu=6,
                                                                    sigma=1.0))

    opt_weird = ArithmeticMeanScoringFunction(
        [min_bertz, mol_under_400, aroma, fluorine])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Physchem MPO',
                                 objective=opt_weird,
                                 contribution_specification=specification)
Exemple #5
0
def start_pop_ranolazine() -> GoalDirectedBenchmark:
    ranolazine = 'COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2'

    modifier = ClippedScoreModifier(upper_x=0.7)
    similar_to_ranolazine = TanimotoScoringFunction(ranolazine,
                                                    fp_type='AP',
                                                    score_modifier=modifier)

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MaxGaussianModifier(
                                            mu=7, sigma=1))

    aroma = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MinGaussianModifier(mu=1,
                                                                    sigma=1))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'),
                                    score_modifier=GaussianModifier(mu=1,
                                                                    sigma=1.0))

    optimize_ranolazine = ArithmeticMeanScoringFunction(
        [similar_to_ranolazine, logP_under_4, fluorine, aroma])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Ranolazine MPO',
                                 objective=optimize_ranolazine,
                                 contribution_specification=specification,
                                 starting_population=[ranolazine])
Exemple #6
0
def hard_fexofenadine() -> GoalDirectedBenchmark:
    """
    make fexofenadine less greasy
    :return:
    """
    smiles = 'CC(C)(C(=O)O)c1ccc(cc1)C(O)CCCN2CCC(CC2)C(O)(c3ccccc3)c4ccccc4'

    modifier = ClippedScoreModifier(upper_x=0.8)
    similar_to_fexofenadine = TanimotoScoringFunction(smiles,
                                                      fp_type='AP',
                                                      score_modifier=modifier)

    tpsa_over_90 = RdkitScoringFunction(descriptor=tpsa,
                                        score_modifier=MaxGaussianModifier(
                                            mu=90, sigma=10))

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MinGaussianModifier(
                                            mu=4, sigma=1))

    optimize_fexofenadine = ArithmeticMeanScoringFunction(
        [similar_to_fexofenadine, tpsa_over_90, logP_under_4])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Fexofenadine MPO',
                                 objective=optimize_fexofenadine,
                                 contribution_specification=specification)
Exemple #7
0
def scaffold_hop() -> GoalDirectedBenchmark:
    """
    Keep the decoration, and similarity to start point, but change the scaffold.
    """

    smiles = "CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C"

    pharmacophor_sim = TanimotoScoringFunction(
        smiles,
        fp_type="PHCO",
        score_modifier=ClippedScoreModifier(upper_x=0.75))

    deco = SMARTSScoringFunction(
        "[#6]-[#6]-[#6]-[#8]-[#6]~[#6]~[#6]~[#6]~[#6]-[#7]-c1ccc2ncsc2c1",
        inverse=False)

    # anti scaffold
    scaffold = SMARTSScoringFunction(
        "[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12", inverse=True)

    scaffold_hop_obj = ArithmeticMeanScoringFunction(
        [pharmacophor_sim, deco, scaffold])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name="Scaffold Hop",
                                 objective=scaffold_hop_obj,
                                 contribution_specification=specification)
Exemple #8
0
def median_molecule() -> GoalDirectedBenchmark:
    t_camphor = TanimotoScoringFunction('CC1(C)C2CCC1(C)C(=O)C2',
                                        fp_type='ECFP4')
    t_menthol = TanimotoScoringFunction('CC(C)C1CCC(C)CC1O', fp_type='ECFP4')
    median = ArithmeticMeanScoringFunction([t_menthol, t_camphor])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Median molecules',
                                 objective=median,
                                 contribution_specification=specification)
def similarity_cns_mpo(smiles, molecule_name, max_logP=5.0) -> GoalDirectedBenchmark:
    benchmark_name = f'{molecule_name}'
    os_tf = TanimotoScoringFunction(smiles, fp_type='FCFP4')
    os_ap = TanimotoScoringFunction(smiles, fp_type='AP')
    anti_fp = TanimotoScoringFunction(smiles, fp_type='ECFP6',
                                      score_modifier=MinGaussianModifier(mu=0.70, sigma=0.1))

    t_cns = ArithmeticMeanScoringFunction([os_tf, os_ap, anti_fp, CNS_MPO_ScoringFunction(max_logP=max_logP)])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name=benchmark_name,
                                 objective=t_cns,
                                 contribution_specification=specification)
def decoration_hop() -> GoalDirectedBenchmark:
    smiles = 'CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C'

    pharmacophor_sim = TanimotoScoringFunction(smiles, fp_type='PHCO',
                                               score_modifier=ClippedScoreModifier(upper_x=0.85))
    # change deco
    deco1 = SMARTSScoringFunction('CS([#6])(=O)=O', inverse=True)
    deco2 = SMARTSScoringFunction('[#7]-c1ccc2ncsc2c1', inverse=True)

    # keep scaffold
    scaffold = SMARTSScoringFunction('[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12', inverse=False)

    deco_hop1_fn = ArithmeticMeanScoringFunction([pharmacophor_sim, deco1, deco2, scaffold])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Deco Hop',
                                 objective=deco_hop1_fn,
                                 contribution_specification=specification)