Exemple #1
0
def sitagliptin_replacement() -> GoalDirectedBenchmark:
    # Find a molecule dissimilar to sitagliptin, but with the same properties
    smiles = "Fc1cc(c(F)cc1F)CC(N)CC(=O)N3Cc2nnc(n2CC3)C(F)(F)F"
    sitagliptin = Chem.MolFromSmiles(smiles)
    target_logp = logP(sitagliptin)
    target_tpsa = tpsa(sitagliptin)

    similarity = TanimotoScoringFunction(smiles,
                                         fp_type="ECFP4",
                                         score_modifier=GaussianModifier(
                                             mu=0, sigma=0.1))
    lp = RdkitScoringFunction(descriptor=logP,
                              score_modifier=GaussianModifier(mu=target_logp,
                                                              sigma=0.2))
    tp = RdkitScoringFunction(descriptor=tpsa,
                              score_modifier=GaussianModifier(mu=target_tpsa,
                                                              sigma=5))
    isomers = IsomerScoringFunction("C16H15F6N5O")

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(
        name="Sitagliptin MPO",
        objective=GeometricMeanScoringFunction([similarity, lp, tp, isomers]),
        contribution_specification=specification,
    )
    def score_mol(self, mol: Chem.Mol) -> float:
        mw = mol_weight(mol)
        lp = logP(mol)
        hbd = num_H_donors(mol)
        mol_tpsa = tpsa(mol)

        o1 = self.tpsa_mingauss(mol_tpsa)
        o2 = self.tpsa_maxgauss(mol_tpsa)
        o3 = self.hbd_gauss(hbd)
        o4 = self.logP_gauss(lp)
        o5 = self.molW_gauss(mw)

        return 0.2 * (o1 + o2 + o3 + o4 + o5)
def smarts_with_other_target(smarts: str, other_molecule: str) -> ScoringFunction:
    smarts_scoring_function = SMARTSScoringFunction(target=smarts)
    other_mol = Chem.MolFromSmiles(other_molecule)
    target_logp = logP(other_mol)
    target_tpsa = tpsa(other_mol)
    target_bertz = bertz(other_mol)

    lp = RdkitScoringFunction(descriptor=logP,
                              score_modifier=GaussianModifier(mu=target_logp, sigma=0.2))
    tp = RdkitScoringFunction(descriptor=tpsa,
                              score_modifier=GaussianModifier(mu=target_tpsa, sigma=5))
    bz = RdkitScoringFunction(descriptor=bertz,
                              score_modifier=GaussianModifier(mu=target_bertz, sigma=30))

    return GeometricMeanScoringFunction([smarts_scoring_function, lp, tp, bz])