Exemple #1
0
    def test_zero_MN_gemm(self):
        # check other border cases...
        e = gulinalg.matrix_multiply(np.zeros((0,2)), np.zeros((2,2)))
        assert_allclose(e, np.zeros((0,2)))

        f = gulinalg.matrix_multiply(np.zeros((2,2)), np.zeros((2,0)))
        assert_allclose(f, np.zeros((2,0)))
Exemple #2
0
    def test_zero_MN_gemm(self):
        # check other border cases...
        e = gulinalg.matrix_multiply(np.zeros((0, 2)), np.zeros((2, 2)))
        assert_allclose(e, np.zeros((0, 2)))

        f = gulinalg.matrix_multiply(np.zeros((2, 2)), np.zeros((2, 0)))
        assert_allclose(f, np.zeros((2, 0)))
 def test_matrix_multiply_ff_f(self):
     """matrix multiply two FORTRAN layout matrices, explicit FORTRAN array output"""
     a = np.asfortranarray(np.random.randn(M, N))
     b = np.asfortranarray(np.random.randn(N, K))
     res = np.zeros((M, K), order='F')
     gulinalg.matrix_multiply(a, b, out=res)
     ref = np.dot(a, b)
     assert_allclose(res, ref)
Exemple #4
0
    def test_uninit_gemm(self):
        a = np.zeros((298, 64))
        b = np.zeros((64, 298))
        c = np.zeros((298, 298), order='F')
        c.fill(np.nan)

        gulinalg.matrix_multiply(a, b, out=c)
        assert not np.isnan(c).any()
 def test_matrix_multiply_fc_f(self):
     """matrix multiply FORTRAN layout by C layout matrices, explicit FORTRAN array output"""
     a = np.asfortranarray(np.random.randn(M,N))
     b = np.ascontiguousarray(np.random.randn(N,K))
     res = np.zeros((M,K), order='F')
     gulinalg.matrix_multiply(a,b, out=res)
     ref = np.dot(a,b)
     assert_allclose(res, ref)
Exemple #6
0
    def test_uninit_gemm(self):
        a = np.zeros((298, 64))
        b = np.zeros((64, 298))
        c = np.zeros((298, 298), order='F')
        c.fill(np.nan)

        gulinalg.matrix_multiply(a, b, out=c)
        assert not np.isnan(c).any()
 def test_matrix_multiply_ff_c(self):
     """matrix multiply two FORTRAN layout matrices, explicit C array output"""
     a = np.asfortranarray(np.random.randn(M,N))
     b = np.asfortranarray(np.random.randn(N,K))
     res = np.zeros((M,K), order='C')
     gulinalg.matrix_multiply(a,b, out=res)
     ref = np.dot(a,b)
     assert_allclose(res, ref)
 def test_matrix_multiply_fc_c(self):
     """matrix multiply FORTRAN layout by C layout matrices, explicit C array output"""
     a = np.asfortranarray(np.random.randn(M, N))
     b = np.ascontiguousarray(np.random.randn(N, K))
     res = np.zeros((M, K), order='C')
     gulinalg.matrix_multiply(a, b, out=res)
     ref = np.dot(a, b)
     assert_allclose(res, ref)
 def test_input_non_contiguous_1(self):
     """first input not contiguous"""
     a = np.ascontiguousarray(np.random.randn(M, N, 2))[:, :, 0]
     b = np.ascontiguousarray(np.random.randn(N, K))
     res = np.zeros((M, K), order='C')
     assert not a.flags.c_contiguous and not a.flags.f_contiguous
     gulinalg.matrix_multiply(a, b, out=res)
     ref = np.dot(a, b)
     assert_allclose(res, ref)
 def test_output_non_contiguous(self):
     """output not contiguous"""
     a = np.ascontiguousarray(np.random.randn(M,N))
     b = np.ascontiguousarray(np.random.randn(N,K))
     res = np.zeros((M,K,2), order='C')[:,:,0]
     assert not res.flags.c_contiguous and not res.flags.f_contiguous
     gulinalg.matrix_multiply(a, b, out=res)
     ref = np.dot(a,b)
     assert_allclose(res, ref)
 def test_input_non_contiguous_1(self):
     """first input not contiguous"""
     a = np.ascontiguousarray(np.random.randn(M,N,2))[:,:,0]
     b = np.ascontiguousarray(np.random.randn(N,K))
     res = np.zeros((M,K), order='C')
     assert not a.flags.c_contiguous and not a.flags.f_contiguous
     gulinalg.matrix_multiply(a, b, out=res)
     ref = np.dot(a,b)
     assert_allclose(res, ref)
 def test_output_non_contiguous(self):
     """output not contiguous"""
     a = np.ascontiguousarray(np.random.randn(M, N))
     b = np.ascontiguousarray(np.random.randn(N, K))
     res = np.zeros((M, K, 2), order='C')[:, :, 0]
     assert not res.flags.c_contiguous and not res.flags.f_contiguous
     gulinalg.matrix_multiply(a, b, out=res)
     ref = np.dot(a, b)
     assert_allclose(res, ref)
 def test_matrix_multiply_ff_f_batch(self):
     """matrix multiply two C layout matrices"""
     n_outer = 4
     for workers in [1, -1]:
         a = np.random.randn(M, N)
         b = np.random.randn(N, K)
         ref = np.dot(a, b)
         a = np.asfortranarray(np.stack((a, ) * n_outer, axis=0))
         b = np.asfortranarray(np.stack((b, ) * n_outer, axis=0))
         ref = np.stack((ref, ) * n_outer, axis=0)
         res = np.zeros((n_outer, M, K), order='F')
         gulinalg.matrix_multiply(a, b, workers=workers, out=res)
         assert_allclose(res, ref)
 def test_output_non_contiguous_batch(self):
     """output not contiguous"""
     n_outer = 4
     for workers in [1, -1]:
         a = np.random.randn(M, N)
         b = np.random.randn(N, K)
         ref = np.dot(a, b)
         a = np.ascontiguousarray(np.stack((a, ) * n_outer, axis=0))
         b = np.ascontiguousarray(np.stack((b, ) * n_outer, axis=0))
         ref = np.stack((ref, ) * n_outer, axis=0)
         res = np.zeros((n_outer, M, K, 2), order='C')[..., 0]
         assert not res.flags.c_contiguous and not res.flags.f_contiguous
         gulinalg.matrix_multiply(a, b, workers=workers, out=res)
         assert_allclose(res, ref)
 def test_input_non_contiguous_3_batch(self):
     """neither input contiguous"""
     n_outer = 4
     for workers in [1, -1]:
         a = np.random.randn(M, N, 2)
         b = np.random.randn(N, K, 2)
         ref = np.dot(a[..., 0], b[..., 0])
         a = np.ascontiguousarray(np.stack((a, ) * n_outer, axis=0))[..., 0]
         b = np.ascontiguousarray(np.stack((b, ) * n_outer, axis=0))[..., 0]
         assert not a.flags.c_contiguous and not a.flags.f_contiguous
         assert not b.flags.c_contiguous and not b.flags.f_contiguous
         ref = np.stack((ref, ) * n_outer, axis=0)
         res = np.zeros((n_outer, M, K), order='C')
         gulinalg.matrix_multiply(a, b, workers=workers, out=res)
         assert_allclose(res, ref)
 def test_matrix_multiply_cc(self):
     """matrix multiply two C layout matrices"""
     a = np.ascontiguousarray(np.random.randn(M,N))
     b = np.ascontiguousarray(np.random.randn(N,K))
     res = gulinalg.matrix_multiply(a,b)
     ref = np.dot(a,b)
     assert_allclose(res, ref)
 def test_real_vector_f(self):
     m = 10
     rstate = np.random.RandomState(5)
     a = rstate.randn(n_batch, m, m)
     a = gulinalg.matrix_multiply(a, a.swapaxes(-2, -1))  # make symmetric
     a = np.asfortranarray(a)
     self._run_vector(a)
 def test_matrix_multiply_ff(self):
     """matrix multiply two FORTRAN layout matrices"""
     a = np.asfortranarray(np.random.randn(M,N))
     b = np.asfortranarray(np.random.randn(N,K))
     res = gulinalg.matrix_multiply(a,b)
     ref = np.dot(a,b)
     assert_allclose(res, ref)
 def test_matrix_multiply_ff(self):
     """matrix multiply two FORTRAN layout matrices"""
     a = np.asfortranarray(np.random.randn(M, N))
     b = np.asfortranarray(np.random.randn(N, K))
     res = gulinalg.matrix_multiply(a, b)
     ref = np.dot(a, b)
     assert_allclose(res, ref)
 def test_matrix_multiply_cc(self):
     """matrix multiply two C layout matrices"""
     a = np.ascontiguousarray(np.random.randn(M, N))
     b = np.ascontiguousarray(np.random.randn(N, K))
     res = gulinalg.matrix_multiply(a, b)
     ref = np.dot(a, b)
     assert_allclose(res, ref)
 def test_complex_vector(self):
     m = 10
     rstate = np.random.RandomState(5)
     a = rstate.randn(n_batch, m, m)
     a = a + 1j * rstate.randn(n_batch, m, m)
     a = gulinalg.matrix_multiply(
         a, np.conj(a).swapaxes(-2, -1)  # make symmetric
     )
     self._run_vector(a)
Exemple #22
0
    def test_zero_K_gemm(self):
        a = np.zeros((2, 0))
        b = np.zeros((0, 2))
        c = np.empty((2, 2), order="C")
        c.fill(np.nan)
        # make sure that the result is set to zero
        gulinalg.matrix_multiply(a, b, out=c)
        assert_allclose(c, np.zeros((2, 2)))

        # make sure that this works also when order is FORTRAN
        c = np.empty((2, 2), order="F")
        c.fill(np.nan)
        gulinalg.matrix_multiply(a, b, out=c)
        assert_allclose(c, np.zeros((2, 2)))

        # check that the correct shape is created as well...
        d = gulinalg.matrix_multiply(a, b)
        assert_allclose(d, np.zeros((2, 2)))
    def test_broadcast(self):
        """test broadcast matrix multiply"""
        a = np.ascontiguousarray(np.random.randn(M, N))
        b = np.ascontiguousarray(np.random.randn(10, N, K))

        res = gulinalg.matrix_multiply(a,b)
        assert res.shape == (10, M, K)
        ref = np.stack([np.dot(a, b[i]) for i in range(len(b))])
        assert_allclose(res, ref)
    def test_broadcast(self):
        """test broadcast matrix multiply"""
        a = np.ascontiguousarray(np.random.randn(M, N))
        b = np.ascontiguousarray(np.random.randn(10, N, K))

        res = gulinalg.matrix_multiply(a, b)
        assert res.shape == (10, M, K)
        ref = np.stack([np.dot(a, b[i]) for i in range(len(b))])
        assert_allclose(res, ref)
Exemple #25
0
    def test_zero_K_gemm(self):
        a = np.zeros((2,0))
        b = np.zeros((0,2))
        c = np.empty((2,2), order="C")
        c.fill(np.nan)
        # make sure that the result is set to zero
        gulinalg.matrix_multiply(a, b, out=c)
        assert_allclose(c, np.zeros((2,2)))

        # make sure that this works also when order is FORTRAN
        c = np.empty((2,2), order="F")
        c.fill(np.nan)
        gulinalg.matrix_multiply(a, b, out=c)
        assert_allclose(c, np.zeros((2,2)))

        # check that the correct shape is created as well...
        d = gulinalg.matrix_multiply(a,b)
        assert_allclose(d, np.zeros((2,2)))
 def test_stride_tricks(self):
     """test that matrices that are contiguous but have their dimension
     overlapped *copy*, as BLAS does not support them"""
     a = np.ascontiguousarray(np.random.randn(M + N))
     a = np.lib.stride_tricks.as_strided(a, shape=(M,N), 
                                         strides=(a.itemsize, a.itemsize))
     b = np.ascontiguousarray(np.random.randn(N,K))
     res = gulinalg.matrix_multiply(a,b)
     ref = np.dot(a,b)
     assert_allclose(res, ref)
Exemple #27
0
 def test_real_broadcast_L(self):
     m = 5
     nbatch = 16
     a = np.asfortranarray(np.random.randn(m, m))
     a = np.dot(a, a.T)  # make Hermetian symmetric
     a = np.stack((a, ) * nbatch, axis=0)
     for workers in [1, -1]:
         L = gulinalg.poinv(np.tril(a), UPLO='L')
         assert_allclose(gulinalg.matrix_multiply(a, L),
                         np.stack((np.eye(m), ) * nbatch, axis=0),
                         atol=1e-10)
 def test_matrix_multiply_fc_batch(self):
     """matrix multiply two C layout matrices"""
     n_outer = 4
     for workers in [1, -1]:
         a = np.random.randn(M, N)
         b = np.random.randn(N, K)
         ref = np.dot(a, b)
         a = np.asfortranarray(np.stack((a, ) * n_outer, axis=0))
         b = np.ascontiguousarray(np.stack((b, ) * n_outer, axis=0))
         ref = np.stack((ref, ) * n_outer, axis=0)
         res = gulinalg.matrix_multiply(a, b, workers=workers)
         assert_allclose(res, ref)
 def test_real_vector_noncontig(self):
     m = 10
     rstate = np.random.RandomState(5)
     a = rstate.randn(n_batch, m, m, 2)[..., 0]
     a = gulinalg.matrix_multiply(a, a.swapaxes(-2, -1))  # make symmetric
     self._run_vector(a)
 def _check_eigen(self, A, w, v):
     '''vectorial check of Mv==wv'''
     lhs = gulinalg.matrix_multiply(A, v)
     rhs = w*v
     assert_allclose(lhs, rhs, rtol=1e-6)