def addCylinder(x, y, i):
    #print (i, x, y)
    fibre_label = "fibre" + str(i)
    core_label = "core" + str(i)

    gvxr.makeCylinder(fibre_label, 50, 815, fiber_radius, "micrometer")
    gvxr.makeCylinder(core_label, 50, 815, core_radius, "micrometer")

    gvxr.setLocalTransformationMatrix(
        fibre_label, [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1])
    gvxr.setLocalTransformationMatrix(
        core_label, [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1])

    gvxr.translateNode(fibre_label, y, 0, x, "micrometer")
    gvxr.translateNode(core_label, y, 0, x, "micrometer")

    gvxr.applyCurrentLocalTransformation(fibre_label)
    gvxr.applyCurrentLocalTransformation(core_label)

    # Fiber
    gvxr.setCompound(fibre_label, fiber_material)
    gvxr.setDensity(fibre_label, fiber_density, "g.cm-3")
    gvxr.setLinearAttenuationCoefficient(fibre_label, fiber_mu, "cm-1")

    # Core
    gvxr.setElement(core_label, core_material)
    gvxr.setLinearAttenuationCoefficient(core_label, core_mu, "cm-1")

    gvxr.addMesh("fiber_geometry", fibre_label)
    gvxr.addMesh("core_geometry", core_label)
def setCylinders(apGeneSet):

    gvxr.removePolygonMeshesFromXRayRenderer()
    gvxr.removePolygonMeshesFromSceneGraph()

    number_of_cylinders = round(len(apGeneSet) / 2)

    gvxr.emptyMesh("fiber_geometry", "root")
    gvxr.emptyMesh("core_geometry", "root")

    for i in range(number_of_cylinders):

        x = g_matrix_x + (apGeneSet[i * 2 + 0] - 0.5) * max(
            g_matrix_width, g_matrix_height) * 1.25
        y = g_matrix_y + (apGeneSet[i * 2 + 1] - 0.5) * max(
            g_matrix_width, g_matrix_height) * 1.25

        # There is no activation_set, use all the individuals
        if type(activation_set) == type(None):
            #print(i+1, '/', number_of_cylinders, [apGeneSet[i * 2 + 0], apGeneSet[i * 2 + 1]])

            addCylinder(x, y, i)

        # There is an activation_set
        else:
            # Only use the active individuals
            if activation_set[i] == True:
                addCylinder(x, y, i)
            else:
                print('\t', i, " is deactivated ")

    # Matrix
    resetMatrix()
    #gvxr.subtractMesh("Matrix", "fiber_geometry")
    gvxr.setMixture("Matrix", matrix_material)
    gvxr.setDensity("Matrix", matrix_density, "g.cm-3")
    gvxr.saveSTLfile("Matrix")
    gvxr.setLinearAttenuationCoefficient("Matrix", matrix_mu, "cm-1")

    # Fiber
    #gvxr.subtractMesh("fiber_geometry", "core_geometry")
    gvxr.setCompound("fiber_geometry", fiber_material)
    gvxr.setDensity("fiber_geometry", fiber_density, "g.cm-3")
    gvxr.setLinearAttenuationCoefficient("fiber_geometry", fiber_mu, "cm-1")

    # Core
    gvxr.setElement("core_geometry", core_material)
    gvxr.setLinearAttenuationCoefficient("core_geometry", core_mu, "cm-1")

    #gvxr.addPolygonMeshAsOuterSurface("Matrix");
    #gvxr.addPolygonMeshAsOuterSurface("fiber_geometry");
    #gvxr.addPolygonMeshAsInnerSurface("fiber_geometry");
    gvxr.addPolygonMeshAsInnerSurface("core_geometry")
Exemple #3
0
    def OnDoubleClick(self, event):
        self.OnSingleClick(event)
        text = self.tree.item(self.selected_item,"text");

        if text == "root":
            print ("Ignore root")
        elif text == "":
            print ("Ignore empty name")
        else:
            print("you clicked on ", text)

            material_selection = MaterialSelection.MaterialSelection(self.root, text, gvxr.getMaterialLabel(text), gvxr.getDensity(text));
            child_children = gvxr.getNumberOfChildren(text);

            if material_selection.cancel == False:
                global x_ray_image;

                # Element
                if material_selection.materialType.get() == 0:
                    gvxr.setElement(text, material_selection.element_name.get());
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                # Mixture
                elif material_selection.materialType.get() == 1:
                    gvxr.setMixture(text, material_selection.mixture.get());
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                # Compound
                elif material_selection.materialType.get() == 2:
                    gvxr.setCompound(text, material_selection.compound.get());
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                # Hounsfield unit
                elif material_selection.materialType.get() == 3:
                    gvxr.setHU(text, material_selection.hounsfield_value.get());
                # Mass attenuation coefficient
                elif material_selection.materialType.get() == 4:
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                    print("?");
                # Linear attenuation coefficient
                elif material_selection.materialType.get() == 5:
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                    print("?");

                self.tree.item(self.selected_item, values=(str(child_children), gvxr.getMaterialLabel(text), str(gvxr.getDensity(text))))

                x_ray_image = gvxr.computeXRayImage();
                gvxr.displayScene()
                self.xray_vis.draw(x_ray_image);
Exemple #4
0
def setXRayEnvironment():

    gvxr.createWindow()
    gvxr.setWindowSize(512, 512)

    #gvxr.usePointSource();
    gvxr.setMonoChromatic(80, "keV", 1000)

    gvxr.setDetectorUpVector(0, 0, -1)
    gvxr.setDetectorNumberOfPixels(768, 1024)
    gvxr.setDetectorPixelSize(0.5, 0.5, "mm")
    # 5 dpi

    setXRayParameters(10.0, 100.0)

    gvxr.loadSceneGraph("./hand.dae", "m")
    node_label_set = []
    node_label_set.append('root')

    # The list is not empty
    while (len(node_label_set)):

        # Get the last node
        last_node = node_label_set[-1]

        # Initialise the material properties
        # print("Set ", label, "'s Hounsfield unit");
        # gvxr.setHU(label, 1000)
        Z = gvxr.getElementAtomicNumber("H")
        gvxr.setElement(last_node, gvxr.getElementName(Z))

        # Change the node colour to a random colour
        gvxr.setColour(last_node, random.uniform(0, 1), random.uniform(0, 1),
                       random.uniform(0, 1), 1.0)

        # Remove it from the list
        node_label_set.pop()

        # Add its Children
        for i in range(gvxr.getNumberOfChildren(last_node)):
            node_label_set.append(gvxr.getChildLabel(last_node, i))

    gvxr.moveToCentre('root')
    gvxr.disableArtefactFiltering()
    gvxr.rotateNode('root', -90, 1, 0, 0)
Exemple #5
0
def createTarget():
    global target

    target_SOD = 100
    target_SDD = 140
    target_angles_pa = [
        0, 20, 0, -10, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    ]

    target = []
    target.append(target_SOD)
    target.append(target_SDD)
    for i in range(len(target_angles_pa)):
        target.append(target_angles_pa[i])

    gvxr.createWindow()
    gvxr.setWindowSize(512, 512)

    #gvxr.usePointSource();
    gvxr.setMonoChromatic(80, "keV", 1000)

    gvxr.setDetectorUpVector(0, 0, -1)
    gvxr.setDetectorNumberOfPixels(1536, 1536)
    gvxr.setDetectorPixelSize(0.5, 0.5, "mm")
    # 5 dpi
    setXRayParameters(target_SOD, target_SDD)

    gvxr.loadSceneGraph("./hand.dae", "m")
    node_label_set = []
    node_label_set.append('root')

    # The list is not empty
    while (len(node_label_set)):

        # Get the last node
        last_node = node_label_set[-1]

        # Initialise the material properties
        # print("Set ", label, "'s Hounsfield unit");
        # gvxr.setHU(label, 1000)
        Z = gvxr.getElementAtomicNumber("H")
        gvxr.setElement(last_node, gvxr.getElementName(Z))

        # Change the node colour to a random colour
        gvxr.setColour(last_node, random.uniform(0, 1), random.uniform(0, 1),
                       random.uniform(0, 1), 1.0)

        # Remove it from the list
        node_label_set.pop()

        # Add its Children
        for i in range(gvxr.getNumberOfChildren(last_node)):
            node_label_set.append(gvxr.getChildLabel(last_node, i))

    gvxr.moveToCentre('root')
    gvxr.disableArtefactFiltering()

    target_image = bone_rotation(target_angles_pa)
    plt.imsave("./posterior-anterior/RMSE/target.png",
               target_image,
               cmap='Greys_r')

    return target_image, target
Exemple #6
0
def main(argv):
    global x_ray_image

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-input",
        type=str,
        help=
        "Input file (see http://assimp.sourceforge.net/main_features_formats.html for a list of supported file formats)"
    )
    parser.add_argument(
        "-unit",
        type=str,
        help="Unit of length corresponding to the input",
        choices=["um", "mm", "cm", "dm", "m", "dam", "hm", "km"])

    args = parser.parse_args()
    if args.input and args.unit:
        # Create an OpenGL context
        print("Create an OpenGL context")
        gvxr.createWindow()
        gvxr.setWindowSize(512, 512)

        # Set up the beam
        print("Set up the beam")
        gvxr.setSourcePosition(100.0, 0.0, 0.0, "cm")
        gvxr.usePointSource()
        #gvxr.useParallelBeam();
        gvxr.setMonoChromatic(0.08, "MeV", 1)

        # Set up the detector
        print("Set up the detector")
        gvxr.setDetectorPosition(-40.0, 0.0, 0.0, "cm")
        gvxr.setDetectorUpVector(0, 0, -1)
        gvxr.setDetectorNumberOfPixels(1024, 1024)
        gvxr.setDetectorPixelSize(0.5, 0.5, "mm")

        # Load the data
        print("Load the data")

        gvxr.loadSceneGraph(args.input, args.unit)

        gvxr.disableArtefactFiltering()

        #gvxr.loadMeshFile("chest", "./HVPTest/chest2.obj", "mm");
        #gvxr.invertNormalVectors("armR");
        #gvxr.invertNormalVectors("chest");

        node_label_set = []
        node_label_set.append('root')

        # The list is not empty
        while (len(node_label_set)):

            # Get the last node
            last_node = node_label_set[-1]

            # Initialise the material properties
            #print("Set ", label, "'s Hounsfield unit");
            #gvxr.setHU(label, 1000)
            Z = gvxr.getElementAtomicNumber("H")
            gvxr.setElement(last_node, gvxr.getElementName(Z))

            # Change the node colour to a random colour
            gvxr.setColour(last_node, random.uniform(0, 1),
                           random.uniform(0, 1), random.uniform(0, 1), 1.0)

            # Remove it from the list
            node_label_set.pop()

            # Add its Children
            for i in range(gvxr.getNumberOfChildren(last_node)):
                node_label_set.append(gvxr.getChildLabel(last_node, i))
            '''
        for label in gvxr.getMeshLabelSet():
            print("Move ", label, " to the centre");
            #gvxr.moveToCentre(label);

            #print("Move the mesh to the center");
            #gvxr.moveToCenter(label);

            #gvxr.invertNormalVectors(label);
        '''
        #gvxr.moveToCentre();
        gvxr.moveToCentre('root')

        # Compute an X-ray image
        #print("Compute an X-ray image");
        #gvxr.disableArtefactFiltering();
        #gvxr.enableArtefactFilteringOnGPU();
        # Not working anymore gvxr.enableArtefactFilteringOnGPU();
        # Not working anymore gvxr.enableArtefactFilteringOnCPU();
        x_ray_image = np.array(gvxr.computeXRayImage())
        '''x_ray_image -= 0.0799;
        x_ray_image /= 0.08 - 0.0799;
        plt.ioff();
        plt.imshow(x_ray_image, cmap="gray");
        plt.show()
        '''
        #gvxr.setShiftFilter(-0.0786232874);
        #gvxr.setScaleFilter(726.368958);

        gvxr.displayScene()

        app = App.App(0.08)
def poserior_anterior(angles):

    node_label_set = []
    node_label_set.append('root')

    # The list is not empty
    while (len(node_label_set)):

        # Get the last node
        node = node_label_set[-1]

        # Initialise the material properties
        Z = gvxr.getElementAtomicNumber("H")
        gvxr.setElement(node, gvxr.getElementName(Z))

        # Change the node colour to a random colour
        gvxr.setColour(node, random.uniform(0, 1), random.uniform(0, 1),
                       random.uniform(0, 1), 1.0)

        # Remove it from the list
        node_label_set.pop()

        # Add its Children
        for i in range(gvxr.getNumberOfChildren(node)):
            node_label_set.append(gvxr.getChildLabel(node, i))

        if node == 'root':

            gvxr.rotateNode(node, angles[0], 1, 0, 0)
            gvxr.rotateNode(node, angles[1], 0, 1, 0)

        if node == 'node-Thu_Meta':
            gvxr.rotateNode(node, angles[2], 1, 0, 0)
            gvxr.rotateNode(node, angles[3], 0, 1, 0)

        if node == 'node-Thu_Prox':
            gvxr.rotateNode(node, angles[4], 1, 0, 0)
            gvxr.rotateNode(node, angles[5], 0, 1, 0)

        if node == 'node-Thu_Dist':
            gvxr.rotateNode(node, angles[6], 1, 0, 0)
            gvxr.rotateNode(node, angles[7], 0, 1, 0)

        if node == 'node-Lit_Meta':
            gvxr.rotateNode(node, angles[8], 1, 0, 0)
            gvxr.rotateNode(node, angles[9], 0, 1, 0)

        if node == 'node-Lit_Prox':
            gvxr.rotateNode(node, angles[10], 1, 0, 0)
            gvxr.rotateNode(node, angles[11], 0, 1, 0)

        if node == 'node-Lit_Midd':
            gvxr.rotateNode(node, angles[12], 1, 0, 0)
            gvxr.rotateNode(node, angles[13], 0, 1, 0)

        if node == 'node-Lit_Dist':
            gvxr.rotateNode(node, angles[14], 1, 0, 0)
            gvxr.rotateNode(node, angles[15], 0, 1, 0)

        if node == 'node-Thi_Meta':
            gvxr.rotateNode(node, angles[16], 1, 0, 0)
            gvxr.rotateNode(node, angles[17], 0, 1, 0)

        if node == 'node-Thi_Prox':
            gvxr.rotateNode(node, angles[18], 1, 0, 0)
            gvxr.rotateNode(node, angles[19], 0, 1, 0)

        if node == 'node-Thi_Midd':
            gvxr.rotateNode(node, angles[20], 1, 0, 0)
            gvxr.rotateNode(node, angles[21], 0, 1, 0)

        if node == 'node-Thi_Dist':
            gvxr.rotateNode(node, angles[22], 1, 0, 0)
            gvxr.rotateNode(node, angles[23], 0, 1, 0)

        if node == 'node-Mid_Meta':
            gvxr.rotateNode(node, angles[24], 1, 0, 0)
            gvxr.rotateNode(node, angles[25], 0, 1, 0)

        if node == 'node-Mid_Prox':
            gvxr.rotateNode(node, angles[26], 1, 0, 0)
            gvxr.rotateNode(node, angles[27], 0, 1, 0)

        if node == 'node-Mid_Midd':
            gvxr.rotateNode(node, angles[28], 1, 0, 0)
            gvxr.rotateNode(node, angles[29], 0, 1, 0)

        if node == 'node-Mid_Dist':
            gvxr.rotateNode(node, angles[30], 1, 0, 0)
            gvxr.rotateNode(node, angles[31], 0, 1, 0)

        if node == 'node-Ind_Meta':
            gvxr.rotateNode(node, angles[32], 1, 0, 0)
            gvxr.rotateNode(node, angles[33], 0, 1, 0)

        if node == 'node-Ind_Prox':
            gvxr.rotateNode(node, angles[34], 1, 0, 0)
            gvxr.rotateNode(node, angles[35], 0, 1, 0)

        if node == 'node-Ind_Midd':
            gvxr.rotateNode(node, angles[36], 1, 0, 0)
            gvxr.rotateNode(node, angles[37], 0, 1, 0)

        if node == 'node-Ind_Dist':
            gvxr.rotateNode(node, angles[0], 1, 0, 0)
            gvxr.rotateNode(node, angles[0], 0, 1, 0)

    x_ray_image = gvxr.computeXRayImage()
    image = np.array(x_ray_image)

    return image