Exemple #1
0
    def load_channels(self):
        """Load all channel definitions as given in the selfuration

        Channels are loaded from sections named [channels-...] or
        those sections whose name is a channel name in itself
        """
        channels_re = re.compile('channels[-\s]')
        # parse channel grouns into individual sections
        for section in filter(channels_re.match, self.sections()):
            names = split_channels(self.get(section, 'channels'))
            items = dict(self.nditems(section, raw=True))
            items.pop('channels')
            for name in names:
                name = name.strip(' \n')
                if not self.has_section(name):
                    self.add_section(name)
                for key, val in items.iteritems():
                    if not self.has_option(name, key):
                        self.set(name, key, val)

        # read all channels
        raw = set()
        trend = set()
        for section in self.sections():
            try:
                m = Channel.MATCH.match(section).groupdict()
            except AttributeError:
                continue
            else:
                if not m['ifo']:
                    continue
            if m['trend']:
                trend.add(section)
            else:
                raw.add(section)

        channels = ChannelList()
        for group in [raw, trend]:
            try:
                newchannels = get_channels(group)
            except httplib.HTTPException:
                newchannels = []

            # read custom channel definitions
            for channel, section in zip(newchannels, group):
                for key, val in nat_sorted(self.nditems(section),
                                           key=lambda x: x[0]):
                    key = re_cchar.sub('_', key.rstrip())
                    if key.isdigit():
                        if not hasattr(channel, 'bits'):
                            channel.bits = []
                        while len(channel.bits) < int(key):
                            channel.bits.append(None)
                        if val.startswith('r"') or val.startswith('r\''):
                            val = eval(val)
                        channel.bits.append(str(val))
                    else:
                        setattr(channel, key, safe_eval(val.rstrip()))
                channels.append(channel)
        return channels
Exemple #2
0
    def load_channels(self):
        """Load all channel definitions as given in the selfuration

        Channels are loaded from sections named [channels-...] or
        those sections whose name is a channel name in itself
        """
        channels_re = re.compile('channels[-\s]')
        # parse channel grouns into individual sections
        for section in filter(channels_re.match, self.sections()):
            names = split_channels(self.get(section, 'channels'))
            items = dict(self.nditems(section, raw=True))
            items.pop('channels')
            for name in names:
                name = name.strip(' \n')
                if not self.has_section(name):
                    self.add_section(name)
                for key, val in items.iteritems():
                    if not self.has_option(name, key):
                        self.set(name, key, val)

        # read all channels
        raw = set()
        trend = set()
        for section in self.sections():
            try:
                m = Channel.MATCH.match(section).groupdict()
            except AttributeError:
                continue
            else:
                if not m['ifo']:
                    continue
            if m['trend']:
                trend.add(section)
            else:
                raw.add(section)

        channels = ChannelList()
        for group in [raw, trend]:
            try:
                newchannels = get_channels(group)
            except httplib.HTTPException:
                newchannels = []

            # read custom channel definitions
            for channel, section in zip(newchannels, group):
                for key, val in nat_sorted(self.nditems(section),
                                           key=lambda x: x[0]):
                    key = re_cchar.sub('_', key.rstrip())
                    if key.isdigit():
                        if not hasattr(channel, 'bits'):
                            channel.bits = []
                        while len(channel.bits) < int(key):
                            channel.bits.append(None)
                        if val.startswith('r"') or val.startswith('r\''):
                            val = eval(val)
                        channel.bits.append(val)
                    else:
                        setattr(channel, key, safe_eval(val.rstrip()))
                channels.append(channel)
        return channels
Exemple #3
0
 def __init__(self, channels, logger=Logger('buffer'), **kwargs):
     """Create a new `DataBuffer`
     """
     if isinstance(channels, str):
         channels = [channels]
     self.channels = ChannelList.from_names(*channels)
     self.data = self.DictClass()
     self.logger = logger
Exemple #4
0
    def channels(self):
        """List of data-source
        :class:`Channels <~gwpy.detector.channel.Channel>` for this
        `DataPlot`.

        :type: :class:`~gwpy.detector.channel.ChannelList`
        """
        return ChannelList(get_channel(c) for c in self._channels)
Exemple #5
0
def get_channels(channels, **kwargs):
    """Find (or create) multiple channels.

    See Also
    --------
    get_channel
    """
    return ChannelList(get_channel(c, **kwargs) for c in channels)
Exemple #6
0
 def __init__(self, channels, logger=Logger('buffer'), **kwargs):
     """Create a new `DataBuffer`
     """
     if isinstance(channels, str):
         channels = [channels]
     self.channels = ChannelList.from_names(*channels)
     self.data = self.DictClass()
     self.logger = logger
Exemple #7
0
 def test_query_nds2(self):
     try:
         import nds2
     except ImportError as e:
         self.skipTest(str(e))
     try:
         from gwpy.io import kerberos
         kerberos.which('kinit')
     except ValueError as e:
         self.skipTest(str(e))
     try:
         cl = ChannelList.query_nds2(self.REAL_CHANNELS,
                                     host='nds.ligo.caltech.edu')
     except IOError as e:
         self.skipTest(str(e))
     self.assertEqual(len(cl), 5)
Exemple #8
0
 def test_query_nds2(self):
     try:
         import nds2
     except ImportError as e:
         self.skipTest(str(e))
     try:
         from gwpy.io import kerberos
         kerberos.which('kinit')
     except ValueError as e:
         self.skipTest(str(e))
     try:
         cl = ChannelList.query_nds2(self.REAL_CHANNELS,
                                     host='nds.ligo.caltech.edu')
     except IOError as e:
         self.skipTest(str(e))
     self.assertEqual(len(cl), 5)
Exemple #9
0
    def test_read_write_clf(self):
        # write clf to file and read it back
        try:
            with NamedTemporaryFile(suffix='.ini', delete=False,
                                    mode='w') as f:
                f.write(CLF)
            cl = ChannelList.read(f.name)
            assert len(cl) == 4
            a = cl[0]
            assert a.name == 'H1:GDS-CALIB_STRAIN'
            assert a.sample_rate == 16384 * units.Hz
            assert a.frametype == 'H1_HOFT_C00'
            assert a.frequency_range[0] == 4. * units.Hz
            assert a.frequency_range[1] == float('inf') * units.Hz
            assert a.safe is False
            assert a.params == {
                'qhigh': '150',
                'safe': 'unsafe',
                'fidelity': 'clean'
            }
            b = cl[1]
            assert b.name == 'H1:ISI-GND_STS_HAM2_X_DQ'
            assert b.frequency_range[0] == .1 * units.Hz
            assert b.frequency_range[1] == 60. * units.Hz
            c = cl[2]
            assert c.name == 'H1:ISI-GND_STS_HAM2_Y_DQ'
            assert c.sample_rate == 256 * units.Hz
            assert c.safe is False
            d = cl[3]
            assert d.name == 'H1:ISI-GND_STS_HAM2_Z_DQ'
            assert d.safe is True
            assert d.params['fidelity'] == 'glitchy'
        finally:
            if os.path.isfile(f.name):
                os.remove(f.name)
        # write omega config again using ChannelList.write and read it back
        # and check that the two lists match
        try:
            with NamedTemporaryFile(suffix='.ini', delete=False,
                                    mode='w') as f2:

                cl.write(f2)
            cl2 = type(cl).read(f2.name)
            assert cl == cl2
        finally:
            if os.path.isfile(f2.name):
                os.remove(f2.name)
Exemple #10
0
    def test_read_write_clf(self):
        # write clf to file and read it back
        try:
            with NamedTemporaryFile(suffix='.ini', delete=False,
                                    mode='w') as f:
                f.write(CLF)
            cl = ChannelList.read(f.name)
            assert len(cl) == 4
            a = cl[0]
            assert a.name == 'H1:GDS-CALIB_STRAIN'
            assert a.sample_rate == 16384 * units.Hz
            assert a.frametype == 'H1_HOFT_C00'
            assert a.frequency_range[0] == 4. * units.Hz
            assert a.frequency_range[1] == float('inf') * units.Hz
            assert a.safe is False
            assert a.params == {'qhigh': '150', 'safe': 'unsafe',
                                'fidelity': 'clean'}
            b = cl[1]
            assert b.name == 'H1:ISI-GND_STS_HAM2_X_DQ'
            assert b.frequency_range[0] == .1 * units.Hz
            assert b.frequency_range[1] == 60. * units.Hz
            c = cl[2]
            assert c.name == 'H1:ISI-GND_STS_HAM2_Y_DQ'
            assert c.sample_rate == 256 * units.Hz
            assert c.safe is False
            d = cl[3]
            assert d.name == 'H1:ISI-GND_STS_HAM2_Z_DQ'
            assert d.safe is True
            assert d.params['fidelity'] == 'glitchy'
        finally:
            if os.path.isfile(f.name):
                os.remove(f.name)
        # write omega config again using ChannelList.write and read it back
        # and check that the two lists match
        try:
            with NamedTemporaryFile(suffix='.ini', delete=False,
                                    mode='w') as f2:

                cl.write(f2)
            cl2 = type(cl).read(f2.name)
            assert cl == cl2
        finally:
            if os.path.isfile(f2.name):
                os.remove(f2.name)
    def read(cls, list_file, maxchans=10):
        """
        Read from a file. Returns a channel `dict`

        Parameters
        ----------
        list_file : `str`
            File list to read dict from
        maxchans : `int`, optional
            Maximum number of channels to read.
            Default set to 10 channels.

        Returns
        -------
        Gives a `dict`
        """
        chandict = ChannelDict(list_file)
        channels = ChannelList.read(list_file)
        for channel in channels:
            # add channel to it's sub group
            try:
                chandict[channel.group].append(channel)
            # if key doesn't exist...add it
            except KeyError:
                chandict[channel.group] = []
                chandict[channel.group].append(channel)
        # Now remake the dict based on maxchans
        chandict2 = {}
        for key in chandict.keys():
            nchans = 0
            ngroups = (len(chandict[key]) / maxchans)
            if not ((len(chandict[key]) % maxchans) == 0):
                ngroups += 1
            for group in range(ngroups):
                newkey = '%s %d' % (key, group + 1)
                chandict2[newkey] = []
                totmax = min((group + 1) * maxchans, len(chandict[key]))
                for ii in range(group * maxchans, totmax):
                    chandict2[newkey].append(chandict[key][ii])
        return chandict2
Exemple #12
0
    def add_channels(self, *channels, **fetchargs):
        """Add one of more channels to this `DataBuffer`

        Parameters
        ----------
        *channels : `str`, `~gwpy.detector.Channel`
            one or more channels to add to the buffer. Any channels that
            already exist in the buffer will be ignored
        **fetchargs
            keyword arguments to pass to the `fetch()` method.
        """
        # find new channels
        channels = ChannelList.from_names(*channels)
        new = []
        for c in channels:
            if c not in self.channels:
                new.append(c)
                self.channels.append(c)
                self.data[c] = self.ListClass()
        # fetch data for new channels
        for seg in self.segments:
            self.get((seg[0], seg[1]), channels=new, **fetchargs)
Exemple #13
0
    def add_channels(self, *channels, **fetchargs):
        """Add one of more channels to this `DataBuffer`

        Parameters
        ----------
        *channels : `str`, `~gwpy.detector.Channel`
            one or more channels to add to the buffer. Any channels that
            already exist in the buffer will be ignored
        **fetchargs
            keyword arguments to pass to the `fetch()` method.
        """
        # find new channels
        channels = ChannelList.from_names(*channels)
        new = []
        for c in channels:
            if c not in self.channels:
                new.append(c)
                self.channels.append(c)
                self.data[c] = self.ListClass()
        # fetch data for new channels
        for seg in self.segments:
            self.get((seg[0], seg[1]), channels=new, **fetchargs)
from gwpy.detector import ChannelList
chname = 'K1:PEM-IXV_GND*'
chlst = ChannelList.query_nds2([chname], host='10.68.10.121', port=8088)
print chlst
Exemple #15
0
def from_ini(filepath, ifo=None):
    """Configure a new Monitor from an INI file

    Parameters
    ----------
    filepath : `str`
        path to INI-format configuration file
    ifo : `str`, optional
        prefix of relevant interferometer. This is only required if
        '%(ifo)s' interpolation is used in the INI file. The default
        value is taken from the ``IFO`` environment variable, if found.

    Returns
    -------
    monitor : `Monitor`
        a new monitor of the type given in the INI file

    Raises
    ------
    ValueError
        if the configuration file cannot be read

        OR

        if IFO interpolation is used, but the `ifo` is not given or found
    """
    # get ifo
    ifo = ifo or os.getenv('IFO', None)
    # read configuration file
    if isinstance(filepath, str):
        filepath = filepath.split(',')
    cp = ConfigParser()
    readok = cp.read(filepath)
    if not len(readok) == len(filepath):
        failed = [cf for cf in filepath if cf not in readok]
        raise ValueError("Failed to read configuration file %r" % failed[0])
    # get basic params
    basics = dict(cp.items('monitor', raw=True))
    type_ = basics.pop('type')
    channels = map(str, ChannelList.from_names(basics.pop('channels', '')))
    combinations = basics.pop('combinations', None)
    basics = dict((key, safe_eval(val)) for (key, val) in basics.iteritems())
    # get type
    monitor = get_monitor(type_)
    # get plotting parameters
    pparams = dict((key, safe_eval(val)) for (key, val) in cp.items('plot'))

    # get channel and reference curve names
    sections = cp.sections()
    if not channels:
        channels = [c for c in sections if c not in ['monitor', 'plot']
                    if c[:4] not in ['ref:', 'com:']]

    references = [c for c in sections if c not in ['monitor', 'plot']
                  if c[:4] == 'ref:']
    if combinations is None:
        combinations = [c for c in sections if c not in ['monitor', 'plot']
                        if c[:4] == 'com:']

    # get channel parameters
    cparams = {}
    for i, channel in enumerate(channels):
        # get channel section
        _params = cp.items(channel)
        # interpolate ifo
        if r'%(ifo)s' in channel and not ifo:
            raise ValueError("Cannot interpolate IFO in channel name without "
                             "IFO environment variable or --ifo on command "
                             "line")
        channels[i] = channel % {'ifo': ifo}
        for param, val in _params:
            val = safe_eval(val)
            if param not in cparams:
                cparams[param] = []
            while len(cparams[param]) < len(channels):
                cparams[param].append(None)
            cparams[param][i] = val


    # get reference parameters
    # reference parameters will be sent to the monitor in a dictionary
    #  with the path of each reference as keys and with the name and the other
    # parameters as a dictionary for each key

    rparams = OrderedDict()
    for reference in references:
        rparamsi = OrderedDict([('name', reference[4:])])
        for param, val in cp.items(reference):
            val = safe_eval(val)
            if param == 'path':
                refpath = val
            else:
                rparamsi[param] = val
            try:
                if os.path.isdir(refpath):
                    # Section is a directory:
                    # import all references in folder (assumes 'dat' format)
                    for f in os.listdir(refpath):
                        if os.path.splitext(f)[1] in ['.txt', '.dat', '.gz']:
                            refpath += f
                            rparamsi.setdefault(
                                'label', os.path.basename(refpath).split('.')
                                [0].replace('_', r' '))
                            rparams[refpath] = rparamsi

                else:
                    rparamsi.setdefault(
                        'label', os.path.basename(refpath).split('.')[0]
                            .replace('_', r' '))
                    rparams[refpath] = rparamsi
            except NameError:
                raise ValueError('Cannot load reference {0} plot if no '
                                 'parameter "path" is defined'
                                 .format(reference))

    # get combination parameters # IN PROGRESS
    combparams = OrderedDict()
    for comb in combinations:
        # get combination section
        _params = cp.items(comb)
        deflabel = comb[4:]
        combparamsi = OrderedDict([('label', deflabel)])
        for param, val in _params:
            val = safe_eval(val)
            combparamsi[param] = val
        combparams[deflabel] = combparamsi

    params = dict(basics.items() + pparams.items() + cparams.items())
    if rparams:
        params['reference'] = rparams
    if combparams:
        params['combination'] = combparams
    return monitor(*channels, **params)
Exemple #16
0
 def test_find(self):
     cl = ChannelList.from_names(*self.NAMES)
     self.assertEqual(cl.find(self.NAMES[2]), 2)
     self.assertRaises(ValueError, cl.find, 'blah')
Exemple #17
0
    def channels(self):
        """List of channels for this plot

        :type: `~gwpy.detector.ChannelList`
        """
        return ChannelList(map(Channel, self._channels))
Exemple #18
0
 def test_find(self):
     cl = ChannelList.from_names(*self.NAMES)
     self.assertEqual(cl.find(self.NAMES[2]), 2)
     self.assertRaises(ValueError, cl.find, 'blah')
Exemple #19
0
 def test_from_names(self):
     cl = ChannelList.from_names(*self.NAMES)
     self.assertListEqual(cl, map(Channel, self.NAMES))
     cl2 = ChannelList.from_names(','.join(self.NAMES))
     self.assertListEqual(cl, cl2)
Exemple #20
0
 def create(self):
     return ChannelList(self.channels)
Exemple #21
0
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GWSumm.  If not, see <http://www.gnu.org/licenses/>.
"""Set of global memory variables for GWSumm package
"""

import time

from gwpy.time import tconvert
from gwpy.segments import DataQualityDict
from gwpy.detector import ChannelList

CHANNELS = ChannelList()
STATES = {}

DATA = {}
SPECTROGRAMS = {}
SPECTRUM = {}
SEGMENTS = DataQualityDict()
TRIGGERS = {}

VERBOSE = False
PROFILE = False
START = time.time()

# run time variables
MODE = 4
WRITTEN_PLOTS = []
Exemple #22
0
def from_ini(filepath, ifo=None):
    """Configure a new Monitor from an INI file

    Parameters
    ----------
    filepath : `str`
        path to INI-format configuration file
    ifo : `str`, optional
        prefix of relevant interferometer. This is only required if
        '%(ifo)s' interpolation is used in the INI file. The default
        value is taken from the ``IFO`` environment variable, if found.

    Returns
    -------
    monitor : `Monitor`
        a new monitor of the type given in the INI file

    Raises
    ------
    ValueError
        if the configuration file cannot be read

        OR

        if IFO interpolation is used, but the `ifo` is not given or found
    """
    # get ifo
    ifo = ifo or os.getenv('IFO', None)
    # read configuration file
    if isinstance(filepath, str):
        filepath = filepath.split(',')
    cp = ConfigParser()
    readok = cp.read(filepath)
    if not len(readok) == len(filepath):
        failed = [cf for cf in filepath if cf not in readok]
        raise ValueError("Failed to read configuration file %r" % failed[0])
    # get basic params
    basics = dict(cp.items('monitor', raw=True))
    type_ = basics.pop('type')
    channels = map(str, ChannelList.from_names(basics.pop('channels', '')))
    combinations = basics.pop('combinations', None)
    basics = dict((key, safe_eval(val)) for (key, val) in basics.iteritems())
    # get type
    monitor = get_monitor(type_)
    # get plotting parameters
    pparams = dict((key, safe_eval(val)) for (key, val) in cp.items('plot'))

    # get channel and reference curve names
    sections = cp.sections()
    if not channels:
        channels = [
            c for c in sections if c not in ['monitor', 'plot']
            if c[:4] not in ['ref:', 'com:']
        ]

    references = [
        c for c in sections if c not in ['monitor', 'plot'] if c[:4] == 'ref:'
    ]
    if combinations is None:
        combinations = [
            c for c in sections if c not in ['monitor', 'plot']
            if c[:4] == 'com:'
        ]

    # get channel parameters
    cparams = {}
    for i, channel in enumerate(channels):
        # get channel section
        _params = cp.items(channel)
        # interpolate ifo
        if r'%(ifo)s' in channel and not ifo:
            raise ValueError("Cannot interpolate IFO in channel name without "
                             "IFO environment variable or --ifo on command "
                             "line")
        channels[i] = channel % {'ifo': ifo}
        for param, val in _params:
            val = safe_eval(val)
            if param not in cparams:
                cparams[param] = []
            while len(cparams[param]) < len(channels):
                cparams[param].append(None)
            cparams[param][i] = val

    # get reference parameters
    # reference parameters will be sent to the monitor in a dictionary
    #  with the path of each reference as keys and with the name and the other
    # parameters as a dictionary for each key

    rparams = OrderedDict()
    for reference in references:
        rparamsi = OrderedDict([('name', reference[4:])])
        for param, val in cp.items(reference):
            val = safe_eval(val)
            if param == 'path':
                refpath = val
            else:
                rparamsi[param] = val
            try:
                if os.path.isdir(refpath):
                    # Section is a directory:
                    # import all references in folder (assumes 'dat' format)
                    for f in os.listdir(refpath):
                        if os.path.splitext(f)[1] in ['.txt', '.dat', '.gz']:
                            refpath += f
                            rparamsi.setdefault(
                                'label',
                                os.path.basename(refpath).split('.')
                                [0].replace('_', r' '))
                            rparams[refpath] = rparamsi

                else:
                    rparamsi.setdefault(
                        'label',
                        os.path.basename(refpath).split('.')[0].replace(
                            '_', r' '))
                    rparams[refpath] = rparamsi
            except NameError:
                raise ValueError(
                    'Cannot load reference {0} plot if no '
                    'parameter "path" is defined'.format(reference))

    # get combination parameters # IN PROGRESS
    combparams = OrderedDict()
    for comb in combinations:
        # get combination section
        _params = cp.items(comb)
        deflabel = comb[4:]
        combparamsi = OrderedDict([('label', deflabel)])
        for param, val in _params:
            val = safe_eval(val)
            combparamsi[param] = val
        combparams[deflabel] = combparamsi

    params = dict(basics.items() + pparams.items() + cparams.items())
    if rparams:
        params['reference'] = rparams
    if combparams:
        params['combination'] = combparams
    return monitor(*channels, **params)
Exemple #23
0
def main(args=None):
    """Run the lasso command-line interface
    """
    # declare global variables
    # this is needed for multiprocessing utilities
    global auxdata, cluster_threshold, cmap, colors, counter, gpsstub
    global line_size_aux, line_size_primary, max_correlated_channels
    global nonzerocoef, nonzerodata, p1, primary, primary_mean, primary_std
    global primaryts, range_is_primary, re_delim, start, target, times
    global threshold, trend_type, xlim

    parser = create_parser()
    args = parser.parse_args(args=args)

    # get run params
    start = int(args.gpsstart)
    end = int(args.gpsend)
    pad = args.filter_padding

    # set pertinent global variables
    cluster_threshold = args.cluster_coefficient
    line_size_aux = args.line_size_aux
    line_size_primary = args.line_size_primary
    threshold = args.threshold
    trend_type = args.trend_type

    # let's go
    LOGGER.info('{} Lasso correlations {}-{}'.format(args.ifo, start, end))

    # get primary channel frametype
    primary = args.primary_channel.format(ifo=args.ifo)
    range_is_primary = 'EFFECTIVE_RANGE_MPC' in args.primary_channel
    if args.primary_cache is not None:
        LOGGER.info("Using custom primary cache file")
    elif args.primary_frametype is None:
        try:
            args.primary_frametype = DEFAULT_FRAMETYPE[
                args.primary_channel.split(':')[1]].format(ifo=args.ifo)
        except KeyError as exc:
            raise type(exc)("Could not determine primary channel's frametype, "
                            "please specify with --primary-frametype")

    # create output directory
    if not os.path.isdir(args.output_dir):
        os.makedirs(args.output_dir)
    os.chdir(args.output_dir)

    # multiprocessing for plots
    nprocplot = (args.nproc_plot or args.nproc) if USETEX else 1

    # bandpass primary
    if args.band_pass:
        try:
            flower, fupper = args.band_pass
        except TypeError:
            flower, fupper = None

        LOGGER.info("-- Loading primary channel data")
        bandts = get_data(primary,
                          start - pad,
                          end + pad,
                          verbose='Reading primary:'.rjust(30),
                          frametype=args.primary_frametype,
                          source=args.primary_cache,
                          nproc=args.nproc)
        if flower < 0 or fupper >= float((bandts.sample_rate / 2.).value):
            raise ValueError(
                "bandpass frequency is out of range for this "
                "channel, band (Hz): {0}, sample rate: {1}".format(
                    args.band_pass, bandts.sample_rate))

        # get darm BLRMS
        LOGGER.debug("-- Filtering data")
        if trend_type == 'minute':
            stride = 60
        else:
            stride = 1
        if flower:
            darmbl = (bandts.highpass(
                flower / 2., fstop=flower / 4., filtfilt=False,
                ftype='butter').notch(60, filtfilt=False).bandpass(
                    flower,
                    fupper,
                    fstop=[flower / 2., fupper * 1.5],
                    filtfilt=False,
                    ftype='butter').crop(start, end))
            darmblrms = darmbl.rms(stride)
            darmblrms.name = '%s %s-%s Hz BLRMS' % (primary, flower, fupper)
        else:
            darmbl = bandts.notch(60).crop(start, end)
            darmblrms = darmbl.rms(stride)
            darmblrms.name = '%s RMS' % primary

        primaryts = darmblrms

        bandts_asd = bandts.asd(4, 2, method='median')
        darmbl_asd = darmbl.asd(4, 2, method='median')

        spectrum_plots = gwplot.make_spectrum_plots(start, end, flower, fupper,
                                                    args.primary_channel,
                                                    bandts_asd, darmbl_asd)
        spectrum_plot_zoomed_out = spectrum_plots[0]
        spectrum_plot_zoomed_in = spectrum_plots[1]

    else:
        # load primary channel data
        LOGGER.info("-- Loading primary channel data")
        primaryts = get_data(primary,
                             start,
                             end,
                             frametype=args.primary_frametype,
                             source=args.primary_cache,
                             verbose='Reading:'.rjust(30),
                             nproc=args.nproc).crop(start, end)

    if args.remove_outliers:
        LOGGER.debug("-- Removing outliers above %f sigma" %
                     args.remove_outliers)
        gwlasso.remove_outliers(primaryts, args.remove_outliers)
    elif args.remove_outliers_pf:
        LOGGER.debug("-- Removing outliers in the bottom {} percent "
                     "of data".format(args.remove_outliers_pf))
        gwlasso.remove_outliers(primaryts,
                                args.remove_outliers_pf,
                                method='pf')
        start = int(primaryts.span()[0])
        end = int(primaryts.span()[1])

    primary_mean = numpy.mean(primaryts.value)
    primary_std = numpy.std(primaryts.value)

    # get aux data
    LOGGER.info("-- Loading auxiliary channel data")
    if args.channel_file is None:
        host, port = io_nds2.host_resolution_order(args.ifo)[0]
        channels = ChannelList.query_nds2('*.mean',
                                          host=host,
                                          port=port,
                                          type='m-trend')
    else:
        with open(args.channel_file, 'r') as f:
            channels = [name.rstrip('\n') for name in f]
    nchan = len(channels)
    LOGGER.debug("Identified %d channels" % nchan)

    if trend_type == 'minute':
        frametype = '%s_M' % args.ifo  # for minute trends
    else:
        frametype = '%s_T' % args.ifo  # for second trends

    # read aux channels
    auxdata = get_data(channels,
                       start,
                       end,
                       verbose='Reading:'.rjust(30),
                       frametype=frametype,
                       nproc=args.nproc,
                       pad=0).crop(start, end)

    # -- removes flat data to be re-introdused later

    LOGGER.info('-- Pre-processing auxiliary channel data')

    auxdata = gwlasso.remove_flat(auxdata)
    flatable = Table(data=(list(set(channels) - set(auxdata.keys())), ),
                     names=('Channels', ))
    LOGGER.debug('Removed {0} channels with flat data'.format(len(flatable)))
    LOGGER.debug('{0} channels remaining'.format(len(auxdata)))

    # -- remove bad data

    LOGGER.info("Removing any channels with bad data...")
    nbefore = len(auxdata)
    auxdata = gwlasso.remove_bad(auxdata)
    nafter = len(auxdata)
    LOGGER.debug('Removed {0} channels with bad data'.format(nbefore - nafter))
    LOGGER.debug('{0} channels remaining'.format(nafter))
    data = numpy.array([scale(ts.value) for ts in auxdata.values()]).T

    # -- perform lasso regression -------------------

    # create model
    LOGGER.info('-- Fitting data to target')
    target = scale(primaryts.value)
    model = gwlasso.fit(data, target, alpha=args.alpha)
    LOGGER.info('Alpha: {}'.format(model.alpha))

    # restructure results for convenience
    allresults = Table(data=(list(auxdata.keys()), model.coef_,
                             numpy.abs(model.coef_)),
                       names=('Channel', 'Lasso coefficient', 'rank'))
    allresults.sort('rank')
    allresults.reverse()
    useful = allresults['rank'] > 0
    allresults.remove_column('rank')
    results = allresults[useful]  # non-zero coefficient
    zeroed = allresults[numpy.invert(useful)]  # zero coefficient

    # extract data for useful channels
    nonzerodata = {name: auxdata[name] for name in results['Channel']}
    nonzerocoef = {name: coeff for name, coeff in results.as_array()}

    # print results
    LOGGER.info('Found {} channels with |Lasso coefficient| >= {}:\n\n'.format(
        len(results), threshold))
    print(results)
    print('\n\n')

    # convert to pandas
    set_option('max_colwidth', -1)
    df = results.to_pandas()
    df.index += 1

    # write results to files
    gpsstub = '%d-%d' % (start, end - start)
    resultsfile = '%s-LASSO_RESULTS-%s.csv' % (args.ifo, gpsstub)
    results.write(resultsfile, format='csv', overwrite=True)
    zerofile = '%s-ZERO_COEFFICIENT_CHANNELS-%s.csv' % (args.ifo, gpsstub)
    zeroed.write(zerofile, format='csv', overwrite=True)
    flatfile = '%s-FLAT_CHANNELS-%s.csv' % (args.ifo, gpsstub)
    flatable.write(flatfile, format='csv', overwrite=True)

    # -- generate lasso plots

    modelFit = model.predict(data)

    re_delim = re.compile(r'[:_-]')
    p1 = (.1, .15, .9, .9)  # global plot defaults for plot1, lasso model

    times = primaryts.times.value
    xlim = primaryts.span
    cmap = get_cmap('tab20')
    colors = [cmap(i) for i in numpy.linspace(0, 1, len(nonzerodata) + 1)]

    plot = Plot(figsize=(12, 4))
    plot.subplots_adjust(*p1)
    ax = plot.gca(xscale='auto-gps', epoch=start, xlim=xlim)
    ax.plot(times,
            _descaler(target),
            label=texify(primary),
            color='black',
            linewidth=line_size_primary)
    ax.plot(times,
            _descaler(modelFit),
            label='Lasso model',
            linewidth=line_size_aux)
    if range_is_primary:
        ax.set_ylabel('Sensitive range [Mpc]')
        ax.set_title('Lasso Model of Range')
    else:
        ax.set_ylabel('Primary Channel Units')
        ax.set_title('Lasso Model of Primary Channel')
    ax.legend(loc='best')
    plot1 = gwplot.save_figure(plot,
                               '%s-LASSO_MODEL-%s.png' % (args.ifo, gpsstub),
                               bbox_inches='tight')

    # summed contributions
    plot = Plot(figsize=(12, 4))
    plot.subplots_adjust(*p1)
    ax = plot.gca(xscale='auto-gps', epoch=start, xlim=xlim)
    ax.plot(times,
            _descaler(target),
            label=texify(primary),
            color='black',
            linewidth=line_size_primary)
    summed = 0
    for i, name in enumerate(results['Channel']):
        summed += scale(nonzerodata[name].value) * nonzerocoef[name]
        if i:
            label = 'Channels 1-{0}'.format(i + 1)
        else:
            label = 'Channel 1'
        ax.plot(times,
                _descaler(summed),
                label=label,
                color=colors[i],
                linewidth=line_size_aux)
    if range_is_primary:
        ax.set_ylabel('Sensitive range [Mpc]')
    else:
        ax.set_ylabel('Primary Channel Units')
    ax.set_title('Summations of Channel Contributions to Model')
    ax.legend(loc='center left', bbox_to_anchor=(1.05, 0.5))
    plot2 = gwplot.save_figure(plot,
                               '%s-LASSO_CHANNEL_SUMMATION-%s.png' %
                               (args.ifo, gpsstub),
                               bbox_inches='tight')

    # individual contributions
    plot = Plot(figsize=(12, 4))
    plot.subplots_adjust(*p1)
    ax = plot.gca(xscale='auto-gps', epoch=start, xlim=xlim)
    ax.plot(times,
            _descaler(target),
            label=texify(primary),
            color='black',
            linewidth=line_size_primary)
    for i, name in enumerate(results['Channel']):
        this = _descaler(scale(nonzerodata[name].value) * nonzerocoef[name])
        if i:
            label = 'Channels 1-{0}'.format(i + 1)
        else:
            label = 'Channel 1'
        ax.plot(times,
                this,
                label=texify(name),
                color=colors[i],
                linewidth=line_size_aux)
    if range_is_primary:
        ax.set_ylabel('Sensitive range [Mpc]')
    else:
        ax.set_ylabel('Primary Channel Units')
    ax.set_title('Individual Channel Contributions to Model')
    ax.legend(loc='center left', bbox_to_anchor=(1.05, 0.5))
    plot3 = gwplot.save_figure(plot,
                               '%s-LASSO_CHANNEL_CONTRIBUTIONS-%s.png' %
                               (args.ifo, gpsstub),
                               bbox_inches='tight')

    # -- process aux channels, making plots

    LOGGER.info("-- Processing channels")
    counter = multiprocessing.Value('i', 0)

    # process channels
    pool = multiprocessing.Pool(nprocplot)
    results = pool.map(_process_channel, enumerate(list(nonzerodata.items())))
    results = sorted(results, key=lambda x: abs(x[1]), reverse=True)

    #  generate clustered time series plots
    counter = multiprocessing.Value('i', 0)
    max_correlated_channels = 20

    if args.no_cluster is False:
        LOGGER.info("-- Generating clusters")
        pool = multiprocessing.Pool(nprocplot)
        clusters = pool.map(_generate_cluster, enumerate(results))

    channelsfile = '%s-CHANNELS-%s.csv' % (args.ifo, gpsstub)
    numpy.savetxt(channelsfile, channels, delimiter=',', fmt='%s')

    # write html
    trange = '%d-%d' % (start, end)
    title = '%s Lasso Correlation: %s' % (args.ifo, trange)
    if args.band_pass:
        links = [trange
                 ] + [(s, '#%s' % s.lower())
                      for s in ['Parameters', 'Spectra', 'Model', 'Results']]
    else:
        links = [trange] + [(s, '#%s' % s.lower())
                            for s in ['Parameters', 'Model', 'Results']]
    (brand, class_) = htmlio.get_brand(args.ifo, 'Lasso', start)
    navbar = htmlio.navbar(links, class_=class_, brand=brand)
    page = htmlio.new_bootstrap_page(title='%s Lasso | %s' %
                                     (args.ifo, trange),
                                     navbar=navbar)
    page.h1(title, class_='pb-2 mt-3 mb-2 border-bottom')

    # -- summary table
    content = [
        ('Primary channel', markup.oneliner.code(primary)),
        ('Primary frametype', markup.oneliner.code(args.primary_frametype)
         or '-'),
        ('Primary cache file', markup.oneliner.code(args.primary_cache)
         or '-'), ('Outlier threshold', '%s sigma' % args.remove_outliers),
        ('Lasso coefficient threshold', str(threshold)),
        ('Cluster coefficient threshold', str(args.cluster_coefficient)),
        ('Non-zero coefficients', str(numpy.count_nonzero(model.coef_))),
        ('&alpha; (model)', '%.4f' % model.alpha)
    ]
    if args.band_pass:
        content.insert(
            2, ('Primary bandpass', '{0}-{1} Hz'.format(flower, fupper)))
    page.h2('Parameters', class_='mt-4 mb-4', id_='parameters')
    page.div(class_='row')
    page.div(class_='col-md-9 col-sm-12')
    page.add(htmlio.parameter_table(content, start=start, end=end))
    page.div.close()  # col-md-9 col-sm-12

    # -- download button
    files = [('%s analyzed channels (CSV)' % nchan, channelsfile),
             ('%s flat channels (CSV)' % len(flatable), flatfile),
             ('%s zeroed channels (CSV)' % len(zeroed), zerofile)]
    page.div(class_='col-md-3 col-sm-12')
    page.add(
        htmlio.download_btn(files,
                            label='Channel information',
                            btnclass='btn btn-%s dropdown-toggle' %
                            args.ifo.lower()))
    page.div.close()  # col-md-3 col-sm-12
    page.div.close()  # rowa

    # -- command-line
    page.h5('Command-line:')
    page.add(htmlio.get_command_line(about=False, prog=PROG))

    if args.band_pass:
        page.h2('Primary channel spectra', class_='mt-4', id_='spectra')
        page.div(class_='card border-light card-body shadow-sm')
        page.div(class_='row')
        page.div(class_='col-md-6')
        spectra_img1 = htmlio.FancyPlot(spectrum_plot_zoomed_out)
        page.add(htmlio.fancybox_img(spectra_img1))
        page.div.close()  # col-md-6
        page.div(class_='col-md-6')
        spectra_img2 = htmlio.FancyPlot(spectrum_plot_zoomed_in)
        page.add(htmlio.fancybox_img(spectra_img2))
        page.div.close()  # col-md-6
        page.div.close()  # row
        page.div.close()  # card border-light card-body shadow-sm

    # -- model information
    page.h2('Model information', class_='mt-4', id_='model')

    page.div(class_='card card-%s card-body shadow-sm' % args.ifo.lower())
    page.div(class_='row')
    page.div(class_='col-md-8 offset-md-2', id_='results-table')
    page.p('Below are the top {} mean minute-trend channels, ranked by '
           'Lasso correlation with the primary.'.format(df.shape[0]))
    page.add(
        df.to_html(classes=('table', 'table-sm', 'table-hover'),
                   formatters={
                       'Lasso coefficient': lambda x: "%.4f" % x,
                       'Channel':
                       lambda x: str(htmlio.cis_link(x.split('.')[0])),
                       '__index__': lambda x: str(x)
                   },
                   escape=False,
                   border=0).replace(' style="text-align: right;"', ''))
    page.div.close()  # col-md-10 offset-md-1
    page.div.close()  # row

    page.div(class_='row', id_='primary-lasso')
    page.div(class_='col-md-8 offset-md-2')
    img1 = htmlio.FancyPlot(plot1)
    page.add(htmlio.fancybox_img(img1))  # primary lasso plot
    page.div.close()  # col-md-8 offset-md-2
    page.div.close()  # primary-lasso

    page.div(class_='row', id_='channel-summation')
    img2 = htmlio.FancyPlot(plot2)
    page.div(class_='col-md-8 offset-md-2')
    page.add(htmlio.fancybox_img(img2))
    page.div.close()  # col-md-8 offset-md-2
    page.div.close()  # channel-summation

    page.div(class_='row', id_='channels-and-primary')
    img3 = htmlio.FancyPlot(plot3)
    page.div(class_='col-md-8 offset-md-2')
    page.add(htmlio.fancybox_img(img3))
    page.div.close()  # col-md-8 offset-md-2
    page.div.close()  # channels-and-primary

    page.div.close()  # card card-<ifo> card-body shadow-sm

    # -- results
    page.h2('Top channels', class_='mt-4', id_='results')
    page.div(id_='results')
    # for each aux channel, create information container and put plots in it
    for i, (ch, lassocoef, plot4, plot5, plot6, ts) in enumerate(results):
        # set container color/context based on lasso coefficient
        if lassocoef == 0:
            break
        elif abs(lassocoef) < threshold:
            h = '%s [lasso coefficient = %.4f] (Below threshold)' % (ch,
                                                                     lassocoef)
        else:
            h = '%s [lasso coefficient = %.4f]' % (ch, lassocoef)
        if ((lassocoef is None) or (lassocoef == 0)
                or (abs(lassocoef) < threshold)):
            card = 'card border-light mb-1 shadow-sm'
            card_header = 'card-header bg-light'
        elif abs(lassocoef) >= .5:
            card = 'card border-danger mb-1 shadow-sm'
            card_header = 'card-header text-white bg-danger'
        elif abs(lassocoef) >= .2:
            card = 'card border-warning mb-1 shadow-sm'
            card_header = 'card-header text-white bg-warning'
        else:
            card = 'card border-info mb-1 shadow-sm'
            card_header = 'card-header text-white bg-info'
        page.div(class_=card)

        # heading
        page.div(class_=card_header)
        page.a(h,
               class_='collapsed card-link cis-link',
               href='#channel%d' % i,
               **{'data-toggle': 'collapse'})
        page.div.close()  # card-header
        # body
        page.div(id_='channel%d' % i,
                 class_='collapse',
                 **{'data-parent': '#results'})
        page.div(class_='card-body')
        if lassocoef is None:
            page.p('The amplitude data for this channel is flat (does not '
                   'change) within the chosen time period.')
        elif abs(lassocoef) < threshold:
            page.p('Lasso coefficient below the threshold of %g.' %
                   (threshold))
        else:
            for image in [plot4, plot5, plot6]:
                img = htmlio.FancyPlot(image)
                page.div(class_='row')
                page.div(class_='col-md-8 offset-md-2')
                page.add(htmlio.fancybox_img(img))
                page.div.close()  # col-md-8 offset-md-2
                page.div.close()  # row
                page.add('<hr class="row-divider">')
            if args.no_cluster is False:
                if clusters[i][0] is None:
                    page.p("<font size='3'><br />No channels were highly "
                           "correlated with this channel.</font>")
                else:
                    page.div(class_='row', id_='clusters')
                    page.div(class_='col-md-12')
                    cimg = htmlio.FancyPlot(clusters[i][0])
                    page.add(htmlio.fancybox_img(cimg))
                    page.div.close()  # col-md-12
                    page.div.close()  # clusters
                    if clusters[i][1] is not None:
                        corr_link = markup.oneliner.a(
                            'Export {} channels (CSV)'.format(
                                max_correlated_channels),
                            href=clusters[i][1],
                            download=clusters[i][1],
                        )
                        page.button(
                            corr_link,
                            class_='btn btn-%s' % args.ifo.lower(),
                        )
        page.div.close()  # card-body
        page.div.close()  # collapse
        page.div.close()  # card
    page.div.close()  # results
    htmlio.close_page(page, 'index.html')  # save and close
    LOGGER.info("-- Process Completed")
Exemple #24
0
 def test_from_names(self):
     cl = ChannelList.from_names(*self.NAMES)
     self.assertListEqual(cl, map(Channel, self.NAMES))
     cl2 = ChannelList.from_names(','.join(self.NAMES))
     self.assertListEqual(cl, cl2)
Exemple #25
0
 def allchannels(self):
     """List of all unique channels for this plot
     """
     chans = set([re.split(r'[#@]', str(c), 1)[0] for c in self._channels])
     return ChannelList(map(Channel, chans))
Exemple #26
0
def main(args=None):
    """Run the old lasso command-line interface
    """
    parser = create_parser()
    args = parser.parse_args(args=args)

    start = int(args.gpsstart)
    end = int(args.gpsend)
    pad = args.filter_padding
    try:
        flower, fupper = args.band_pass
    except TypeError:
        flower, fupper = None

    LOGGER.info('{} Slow Correlation {}-{}'.format(args.ifo, start, end))

    if args.primary_channel == '{ifo}:GDS-CALIB_STRAIN':
        args.primary_frametype = '%s_HOFT_C00' % args.ifo
    primary = args.primary_channel.format(ifo=args.ifo)
    rangechannel = args.range_channel.format(ifo=args.ifo)

    if not os.path.isdir(args.output_dir):
        os.makedirs(args.output_dir)
    os.chdir(args.output_dir)
    nprocplot = args.nproc_plot or args.nproc

    # load data
    LOGGER.info("-- Loading range data")
    rangets = get_data(
        rangechannel, start, end, frametype=args.range_frametype,
        verbose=True, nproc=args.nproc)

    if args.trend_type == 'minute':
        dstart, dend = rangets.span
    else:
        dstart = start
        dend = end

    LOGGER.info("-- Loading h(t) data")
    darmts = get_data(primary, dstart-pad, dend+pad, verbose=True,
                      frametype=args.primary_frametype, nproc=args.nproc)

    # get darm BLRMS
    LOGGER.debug("-- Filtering h(t) data")
    if args.trend_type == 'minute':
        stride = 60
    else:
        stride = 1
    if flower:
        darmblrms = (
            darmts.highpass(flower/2., fstop=flower/4.,
                            filtfilt=False, ftype='butter')
            .notch(60, filtfilt=False)
            .bandpass(flower, fupper, fstop=[flower/2., fupper*1.5],
                      filtfilt=False, ftype='butter')
            .crop(dstart, dend).rms(stride))
        darmblrms.name = '%s %s-%s Hz BLRMS' % (primary, flower, fupper)
    else:
        darmblrms = darmts.notch(60).crop(dstart, dend).rms(stride)
        darmblrms.name = '%s RMS' % primary

    if args.remove_outliers:
        LOGGER.debug(
            "-- Removing outliers above %f sigma" % args.remove_outliers)
        gwlasso.remove_outliers(darmblrms, args.remove_outliers)
        gwlasso.remove_outliers(rangets, args.remove_outliers)

    if args.trend_type == 'minute':
        # calculate the r value between the DARM BLRMS and the Range timeseries
        corr_p = numpy.corrcoef(rangets.value, darmblrms.value)[0, 1]
        # calculate the ρ value between the DARM BLRMS and the Range timeseries
        corr_s = spearmanr(rangets.value, darmblrms.value)[0]
    else:
        # for second trends, set correlation to 0 since sample rates differ
        corr_p = 0
        corr_s = 0

    # create scaled versions of data to compare to each other
    LOGGER.debug("-- Creating scaled data")
    rangescaled = rangets.detrend()
    rangerms = numpy.sqrt(sum(rangescaled**2.0)/len(rangescaled))
    darmscaled = darmblrms.detrend()
    darmrms = numpy.sqrt(sum(darmscaled**2.0)/len(darmscaled))

    # create scaled darm using the rms(range) and the rms(darm)
    if args.trend_type == 'minute':
        darmscaled *= (-rangerms / darmrms)

    # get aux data
    LOGGER.info("-- Loading auxiliary channel data")
    host, port = io_nds2.host_resolution_order(args.ifo)[0]
    if args.channel_file is None:
        channels = ChannelList.query_nds2('*.mean', host=host, port=port,
                                          type='m-trend')
    else:
        with open(args.channel_file, 'r') as f:
            channels = f.read().rstrip('\n').split('\n')
    nchan = len(channels)
    LOGGER.debug("Identified %d channels" % nchan)
    if args.trend_type == 'minute':
        frametype = '%s_M' % args.ifo  # for minute trends
    else:
        frametype = '%s_T' % args.ifo  # for second trends
    auxdata = get_data(
        list(map(str, channels)), dstart, dend, verbose=True,
        pad=0, frametype=frametype, nproc=args.nproc)

    gpsstub = '%d-%d' % (start, end-start)
    re_delim = re.compile('[:_-]')

    LOGGER.info("-- Processing channels")
    counter = multiprocessing.Value('i', 0)

    p1 = (.1, .1, .9, .95)
    p2 = (.1, .15, .9, .9)

    def process_channel(input_,):
        chan, ts = input_
        flat = ts.value.min() == ts.value.max()
        if flat:
            corr1 = None
            corr2 = None
            corr1s = None
            corr2s = None
            plot1 = None
            plot2 = None
            plot3 = None
        else:
            corr1 = numpy.corrcoef(ts.value, darmblrms.value)[0, 1]
            corr1s = spearmanr(ts.value, darmblrms.value)[0]
            if args.trend_type == 'minute':
                corr2 = numpy.corrcoef(ts.value, rangets.value)[0, 1]
                corr2s = spearmanr(ts.value, rangets.value)[0]
            else:
                corr2 = 0.0
                corr2s = 0.0
            # if all corralations are below threshold it does not plot
            if((abs(corr1) < args.threshold)
               and (abs(corr1s) < args.threshold)
               and (abs(corr2) < args.threshold)
               and (abs(corr2s) < args.threshold)):
                plot1 = None
                plot2 = None
                plot3 = None
                return (chan, corr1, corr2, plot1,
                        plot2, plot3, corr1s, corr2s)

            plot = Plot(darmblrms, ts, rangets,
                        xscale="auto-gps", separate=True,
                        figsize=(12, 12))
            plot.subplots_adjust(*p1)
            plot.axes[0].set_ylabel('$h(t)$ BLRMS [strain]')
            plot.axes[1].set_ylabel('Channel units')
            plot.axes[2].set_ylabel('Sensitive range [Mpc]')
            for ax in plot.axes:
                ax.legend(loc='best')
                ax.set_xlim(start, end)
                ax.set_epoch(start)
            channelstub = re_delim.sub('_', str(chan)).replace('_', '-', 1)
            plot1 = '%s_TRENDS-%s.png' % (channelstub, gpsstub)
            try:
                plot.save(plot1)
            except (IOError, IndexError):
                plot.save(plot1)
            except RuntimeError as e:
                if 'latex' in str(e).lower():
                    plot.save(plot1)
                else:
                    raise
            plot.close()

            # plot auto-scaled verions
            tsscaled = ts.detrend()
            tsrms = numpy.sqrt(sum(tsscaled**2.0)/len(tsscaled))
            if args.trend_type == 'minute':
                tsscaled *= (rangerms / tsrms)
                if corr1 > 0:
                    tsscaled *= -1
            else:
                tsscaled *= (darmrms / tsrms)
                if corr1 < 0:
                    tsscaled *= -1
            plot = Plot(darmscaled, rangescaled, tsscaled,
                        xscale="auto-gps", figsize=[12, 6])
            plot.subplots_adjust(*p2)
            ax = plot.gca()
            ax.set_xlim(start, end)
            ax.set_epoch(start)
            ax.set_ylabel('Scaled amplitude [arbitrary units]')
            ax.legend(loc='best')
            plot2 = '%s_COMPARISON-%s.png' % (channelstub, gpsstub)
            try:
                plot.save(plot2)
            except (IOError, IndexError):
                plot.save(plot2)
            except RuntimeError as e:
                if 'latex' in str(e).lower():
                    plot.save(plot2)
                else:
                    raise
            plot.close()

            # plot scatter plots
            rangeColor = 'red'
            darmblrmsColor = 'blue'

            tsCopy = ts.reshape(-1, 1)
            rangetsCopy = rangets.reshape(-1, 1)
            darmblrmsCopy = darmblrms.reshape(-1, 1)

            darmblrmsReg = linear_model.LinearRegression()
            darmblrmsReg.fit(tsCopy, darmblrmsCopy)
            darmblrmsFit = darmblrmsReg.predict(tsCopy)

            rangeReg = linear_model.LinearRegression()
            rangeReg.fit(tsCopy, rangetsCopy)
            rangeFit = rangeReg.predict(tsCopy)

            fig = Plot(figsize=(12, 6))
            fig.subplots_adjust(*p2)
            ax = fig.add_subplot(121)
            ax.set_xlabel('Channel units')
            ax.set_ylabel('Sensitive range [Mpc]')
            yrange = abs(max(darmblrms.value) - min(darmblrms.value))
            upperLim = max(darmblrms.value) + .1 * yrange
            lowerLim = min(darmblrms.value) - .1 * yrange
            ax.set_ylim(lowerLim, upperLim)
            ax.text(.9, .1, 'r = ' + str('{0:.2}'.format(corr1)),
                    verticalalignment='bottom', horizontalalignment='right',
                    transform=ax.transAxes, color='black', size=20,
                    bbox=dict(boxstyle='square', facecolor='white', alpha=.75,
                              edgecolor='black'))
            fig.add_scatter(ts, darmblrms, color=darmblrmsColor)
            fig.add_line(ts, darmblrmsFit, color='black')

            ax = fig.add_subplot(122)
            ax.set_xlabel('Channel units')
            ax.set_ylabel('$h(t)$ BLRMS [strain]')
            ax.text(.9, .1, 'r = ' + str('{0:.2}'.format(corr2)),
                    verticalalignment='bottom', horizontalalignment='right',
                    transform=ax.transAxes, color='black', size=20,
                    bbox=dict(boxstyle='square', facecolor='white', alpha=.75,
                              edgecolor='black'))
            fig.add_scatter(ts, rangets, color=rangeColor)
            fig.add_line(ts, rangeFit, color='black')

            plot3 = '%s_SCATTER-%s.png' % (channelstub, gpsstub)
            try:
                fig.save(plot3)
            except (IOError, IndexError):
                fig.save(plot3)
            except RuntimeError as e:
                if 'latex' in str(e).lower():
                    fig.save(plot3)
                else:
                    raise
            plt.close(fig)

        # increment counter and print status
        with counter.get_lock():
            counter.value += 1
            pc = 100 * counter.value / nchan
            LOGGER.debug("Completed [%d/%d] %3d%% %-50s"
                         % (counter.value, nchan, pc, '(%s)' % str(chan)))
            sys.stdout.flush()
        return chan, corr1, corr2, plot1, plot2, plot3, corr1s, corr2s

    pool = multiprocessing.Pool(nprocplot)
    results = pool.map(process_channel, list(auxdata.items()))
    results.sort(key=lambda x: (x[1] is not None and max(abs(x[1]), abs(x[2]),
                 abs(x[6]), abs(x[7])) or 0, x[0]), reverse=True)

    with open('results.txt', 'w') as f:
        for ch, corr1, corr2, _, _, _, corr1s, corr2s in results:
            print('%s %s %s %s %s' % (
                ch, corr1, corr2, corr1s, corr2s), file=f)

    # -- write html
    trange = '%d-%d' % (start, end)
    title = '%s Slow Correlations: %s' % (args.ifo, trange)
    links = [trange] + [(s, '#%s' % s.lower())
                        for s in ['Parameters', 'Results']]
    (brand, class_) = htmlio.get_brand(args.ifo, 'Correlations', start)
    navbar = htmlio.navbar(links, class_=class_, brand=brand)
    page = htmlio.new_bootstrap_page(title=title, navbar=navbar)

    # header
    if flower:
        pstr = ('<code>%s</code> (band-limited %s-%s Hz)'
                % (primary, flower, fupper))
    else:
        pstr = primary
    if args.trend_type == 'minute':
        pstr += ' and <code>%s</code>' % rangechannel
    page.div(class_='pb-2 mt-3 mb-2 border-bottom')
    page.h1(title)
    page.p("This analysis searched %d channels for linear correlations with %s"
           % (nchan, pstr))
    page.div.close()

    # run parameters
    contents = [
        ('Primary channel',
         '{} ({})'.format(
             primary, args.primary_frametype.format(ifo=args.ifo))),
        ('Range channel',
         '{} ({})'.format(rangechannel, args.range_frametype or '-')),
        ('Band-pass', '{}-{}'.format(flower, fupper))]
    page.add(htmlio.parameter_table(contents, start=start, end=end))

    # results
    page.h2('Results', class_='mt-4', id_='results')
    r_blrms = "<i>r<sub>blrms</sub> </i>"
    r_range = "<i>r<sub>range</sub> </i>"
    r = "<i>r</i>"
    rho_blrms = "<i>&rho;<sub>blrms</sub> </i>"
    rho_range = "<i>&rho;<sub>range</sub> </i>"
    rho = "<i>&rho;</i>"
    Pearson_wikilink = htmlio.markup.oneliner.a(
        "Pearson's correlation coefficient",
        href="https://en.wikipedia.org/wiki/"
             "Pearson_product-moment_correlation_coefficient",
        rel="external")
    numpylink = htmlio.markup.oneliner.a(
        "<code>numpy.corrcoef</code>",
        href="http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/"
             "numpy.corrcoef.html",
        rel="external")
    Spearman_wikilink = htmlio.markup.oneliner.a(
        "Spearman's correlation coefficient",
        href="https://en.wikipedia.org/wiki/"
             "Spearman%27s_rank_correlation_coefficient",
        rel="external")
    scipylink = htmlio.markup.oneliner.a(
        "<code>scipy.stats.spearmanr</code>",
        href="http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/"
             "scipy.stats.spearmanr.html",
        rel="external")
    page.p("In the results below, all %s values are calculated as"
           " the square of %s using %s and all %s values are calculated"
           " as the square of %s using %s."
           % (r, Pearson_wikilink, numpylink, rho,
              Spearman_wikilink, scipylink))
    if args.trend_type == 'minute':
        page.p("%s and %s are reported for <code>%s</code>."
               " %s and %s are reported for <code>%s</code>."
               " The %s between these two channels is %.2f."
               " The %s between these two channels is %.2f."
               % (r_blrms, rho_blrms, primary, r_range, rho_range,
                  rangechannel, r, corr_p, rho, corr_s))

    page.div(id_='accordion')
    for i, (ch, corr1, corr2, plot1, plot2, plot3,
            corr1s, corr2s) in enumerate(results):
        if corr1 is None:
            h = '%s [flat]' % ch
        elif plot1 is None:
            h = ('%s [%s = %.2f, %s = %.2f] [%s = %.2f, %s = %.2f]'
                 ' [below threshold]'
                 % (ch, r_blrms, corr1, r_range, corr2, rho_blrms,
                    corr1s, rho_range, corr2s))
        elif args.trend_type == 'minute':
            h = ('%s [%s = %.2f, %s = %.2f] [%s = %.2f, %s = %.2f]'
                 % (ch, r_blrms, corr1, r_range, corr2, rho_blrms,
                    corr1s, rho_range, corr2s))
        else:
            h = '%s [%s = %.2f]' % (ch, r_blrms, corr1)
        if (corr1 is None) or (corr1 == 0) or (plot1 is None):
            context = 'bg-light'
        elif((numpy.absolute(corr1) >= .6) or (numpy.absolute(corr1s) >= .6)
             or (numpy.absolute(corr2) >= .6)
             or (numpy.absolute(corr2s) >= .6)):
            context = 'text-white bg-danger'
        elif((numpy.absolute(corr1) >= .4) or (numpy.absolute(corr1s) >= .4)
             or (numpy.absolute(corr2) >= .4)
             or (numpy.absolute(corr2s) >= .4)):
            context = 'text-white bg-warning'
        else:
            context = 'text-white bg-info'
        page.div(class_='card %s' % context)
        # heading
        page.div(class_='card-header')
        page.a(h, class_='collapsed card-link cis-link', href='#channel%d' % i,
               **{'data-toggle': 'collapse'})
        page.div.close()  # card-header
        # body
        page.div(id_='channel%d' % i, class_='collapse',
                 **{'data-parent': '#accordion'})
        page.div(class_='card-body')
        if corr1 is None:
            page.p("The amplitude data for this channel is flat"
                   " (does not change) for the chosen time period.")
        elif plot1 is None:
            page.p("Niether r nor rho are above the threshold of %.2f."
                   % (args.threshold))
        else:
            for p in (plot1, plot2, plot3):
                img = htmlio.FancyPlot(p)
                page.add(htmlio.fancybox_img(img))
        page.div.close()  # card-body
        page.div.close()  # collapse
        page.div.close()  # card
    page.div.close()  # accordion
    htmlio.close_page(page, 'index.html')  # save and close

    LOGGER.info("-- Process Completed")