def test_compare_arma(): #this is a preliminary test to compare arma_kf, arma_cond_ls and arma_cond_mle #the results returned by the fit methods are incomplete #for now without random.seed #np.random.seed(9876565) x = fa.ArmaFft([1, -0.5], [1., 0.4], 40).generate_sample(size=200, burnin=1000) # this used kalman filter through descriptive # d = ARMA(x) # d.fit((1,1), trend='nc') # dres = d.res modkf = ARMA(x) ##rkf = mkf.fit((1,1)) ##rkf.params reskf = modkf.fit((1,1), trend='nc', disp=-1) dres = reskf modc = Arma(x) resls = modc.fit(order=(1,1)) rescm = modc.fit_mle(order=(1,1), start_params=[0.4,0.4, 1.], disp=0) #decimal 1 corresponds to threshold of 5% difference #still different sign corrcted #assert_almost_equal(np.abs(resls[0] / d.params), np.ones(d.params.shape), decimal=1) assert_almost_equal(resls[0] / dres.params, np.ones(dres.params.shape), decimal=1) #rescm also contains variance estimate as last element of params #assert_almost_equal(np.abs(rescm.params[:-1] / d.params), np.ones(d.params.shape), decimal=1) assert_almost_equal(rescm.params[:-1] / dres.params, np.ones(dres.params.shape), decimal=1)
def mcarma22(niter=10, nsample=1000, ar=None, ma=None, sig=0.5): '''run Monte Carlo for ARMA(2,2) DGP parameters currently hard coded also sample size `nsample` was not a self contained function, used instances from outer scope now corrected ''' #nsample = 1000 #ar = [1.0, 0, 0] if ar is None: ar = [1.0, -0.55, -0.1] #ma = [1.0, 0, 0] if ma is None: ma = [1.0, 0.3, 0.2] results = [] results_bse = [] for _ in range(niter): y2 = arma_generate_sample(ar, ma, nsample + 1000, sig)[-nsample:] y2 -= y2.mean() arest2 = Arma(y2) rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2, 2)) results.append(rhohat2a) err2a = arest2.geterrors(rhohat2a) sige2a = np.sqrt(np.dot(err2a, err2a) / nsample) #print 'sige2a', sige2a, #print 'cov_x2a.shape', cov_x2a.shape #results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) if not cov_x2a is None: results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) else: results_bse.append(np.nan + np.zeros_like(rhohat2a)) return np.r_[ar[1:], ma[1:]], np.array(results), np.array(results_bse)
def mcarma22(niter=10, nsample=1000, ar=None, ma=None, sig=0.5): '''run Monte Carlo for ARMA(2,2) DGP parameters currently hard coded also sample size `nsample` was not a self contained function, used instances from outer scope now corrected ''' #nsample = 1000 #ar = [1.0, 0, 0] if ar is None: ar = [1.0, -0.55, -0.1] #ma = [1.0, 0, 0] if ma is None: ma = [1.0, 0.3, 0.2] results = [] results_bse = [] for _ in range(niter): y2 = arma_generate_sample(ar,ma,nsample+1000, sig)[-nsample:] y2 -= y2.mean() arest2 = Arma(y2) rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,2)) results.append(rhohat2a) err2a = arest2.geterrors(rhohat2a) sige2a = np.sqrt(np.dot(err2a,err2a)/nsample) #print 'sige2a', sige2a, #print 'cov_x2a.shape', cov_x2a.shape #results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) if not cov_x2a is None: results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) else: results_bse.append(np.nan + np.zeros_like(rhohat2a)) return np.r_[ar[1:], ma[1:]], np.array(results), np.array(results_bse)
def test_compare_arma(): #this is a preliminary test to compare arma_kf, arma_cond_ls and arma_cond_mle #the results returned by the fit methods are incomplete #for now without random.seed #np.random.seed(9876565) x = fa.ArmaFft([1, -0.5], [1., 0.4], 40).generate_sample(size=200, burnin=1000) # this used kalman filter through descriptive # d = ARMA(x) # d.fit((1,1), trend='nc') # dres = d.res modkf = ARMA(x) ##rkf = mkf.fit((1,1)) ##rkf.params reskf = modkf.fit((1, 1), trend='nc', disp=-1) dres = reskf modc = Arma(x) resls = modc.fit(order=(1, 1)) rescm = modc.fit_mle(order=(1, 1), start_params=[0.4, 0.4, 1.], disp=0) #decimal 1 corresponds to threshold of 5% difference #still different sign corrcted #assert_almost_equal(np.abs(resls[0] / d.params), np.ones(d.params.shape), decimal=1) assert_almost_equal(resls[0] / dres.params, np.ones(dres.params.shape), decimal=1) #rescm also contains variance estimate as last element of params #assert_almost_equal(np.abs(rescm.params[:-1] / d.params), np.ones(d.params.shape), decimal=1) assert_almost_equal(rescm.params[:-1] / dres.params, np.ones(dres.params.shape), decimal=1)