Exemple #1
0
 def _create_env_from_random_state(self):
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(self.np_random.randint(0, 1000)) % 2**31
     seed3 = seeding.hash_seed(seed2 + 1) % 2**31
     seed4 = seeding.hash_seed(seed3 + 1) % 2**31
     hour = self.np_random.randint(low=0.0, high=24.0)
     if self.saved_state is not None:
        seed2=self.saved_state[0]
        seed3=self.saved_state[1]
        seed4=self.saved_state[2]
        hour=self.saved_state[3]
        print('Using state', seed2, seed3, seed4, hour)
     start_time = datetime(2021, 1, 1, hour, 0, 0)
     patient = T1DPatient.withName(self.patient_name, random_init_bg=True, seed=seed4)
     sensor = CGMSensor.withName(self.SENSOR_HARDWARE, seed=seed2)
     if self.harrison_benedict:
         vpatient_params = pd.read_csv(PATIENT_PARA_FILE)
         self.kind = self.patient_name.split('#')[0]
         self.bw = vpatient_params.query('Name=="{}"'.format(self.patient_name))['BW'].item()
         scenario=RandomBalancedScenario(start_time=start_time, seed=seed3, harrison_benedict=self.harrison_benedict, bw=self.bw, kind=self.kind)
     else:
         scenario = RandomScenario(start_time=start_time, seed=seed3)
     pump = InsulinPump.withName(self.INSULIN_PUMP_HARDWARE)
     env = _T1DSimEnv(patient, sensor, pump, scenario,noise=self.noise)
     return env, seed2, seed3, seed4, hour
 def _seed(self, seed=None):
     self.np_random, seed1 = seeding.np_random(seed=seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     seed3 = seeding.hash_seed(seed2 + 1) % 2**31
     return [seed1, seed2, seed3]
Exemple #3
0
def set_global_seeds(seed):
    import tensorflow as tf
    from gym.utils.seeding import hash_seed
    seed = hash_seed(seed, max_bytes=4)
    tf.set_random_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
Exemple #4
0
    def seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed. This gets passed as a uint, but gets
        # checked as an int elsewhere, so we need to keep it below
        # 2**31.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**31
        # Empirically, we need to seed before loading the ROM.
        self.ale.setInt(b'random_seed', seed2)
        self.ale.loadROM(self.game_path)

        if self.game_mode is not None:
            modes = self.ale.getAvailableModes()

            assert self.game_mode in modes, (
                "Invalid game mode \"{}\" for game {}.\nAvailable modes are: {}"
            ).format(self.game_mode, self.game, modes)
            self.ale.setMode(self.game_mode)

        if self.game_difficulty is not None:
            difficulties = self.ale.getAvailableDifficulties()

            assert self.game_difficulty in difficulties, (
                "Invalid game difficulty \"{}\" for game {}.\nAvailable difficulties are: {}"
            ).format(self.game_difficulty, self.game, difficulties)
            self.ale.setDifficulty(self.game_difficulty)

        return [seed1, seed2]
Exemple #5
0
    def _seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed. This gets passed as a uint, but gets
        # checked as an int elsewhere, so we need to keep it below
        # 2**31.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**31
        # Empirically, we need to seed before loading the ROM.
        self.ale.setInt(b'random_seed', seed2)
        self.ale.loadROM(self.game_path)
        self._action_set = self.ale.getMinimalActionSet()

        self.action_space = spaces.Discrete(len(self._action_set),
                                            np_random=self.np_random)

        (screen_width, screen_height) = self.ale.getScreenDims()
        if self._obs_type == 'ram':
            self.observation_space = spaces.Box(low=np.zeros(128),
                                                high=np.zeros(128) + 255,
                                                np_random=self.np_random)
        elif self._obs_type == 'image':
            self.observation_space = spaces.Box(low=0,
                                                high=255,
                                                shape=(screen_height,
                                                       screen_width, 3),
                                                np_random=self.np_random)
        else:
            raise error.Error('Unrecognized observation type: {}'.format(
                self._obs_type))
        return [seed1, seed2]
Exemple #6
0
    def __call__(self, env_maker, seed=None, monitor_file=None):
        """
        :param env_maker: instance of roam_learning.robot_env.EnvMaker
        :param seed: int that is used to generate seeds for vectorized envs
        :param monitor_file: path to a .csv file to log episode rewards, lengths etc,. of the vectorized envs
        :return: instance of either DummyVecEnv, SubprocVecEnv or ShmemVecEnv
        """
        # Create a list of env makers
        if seed is not None:
            assert isinstance(seed, int)
        env_makers = []
        for i in range(self.nenvs):
            env_makers += [deepcopy(env_maker)]
            if seed is not None:
                seed = hash_seed(seed)
                env_makers[i].set_seed(seed + i)

        # Create the vectorized envs
        envs = self.vec_env_wrapper(env_makers)

        # Monitor the envs before normalization
        if monitor_file is not None:
            envs = VecMonitor(envs, filename=monitor_file)
        if self.normalize_obs or self.normalize_ret:
            envs = VecNormalize(envs, ob=self.normalize_obs, ret=self.normalize_ret, use_tf=True)
        return envs
Exemple #7
0
    def _create_env_from_random_state(self):
        # Derive a random seed. This gets passed as a uint, but gets
        # checked as an int elsewhere, so we need to keep it below
        # 2**31.
        seed2 = seeding.hash_seed(self.np_random.randint(0, 1000)) % 2**31
        seed3 = seeding.hash_seed(seed2 + 1) % 2**31
        seed4 = seeding.hash_seed(seed3 + 1) % 2**31

        hour = self.np_random.randint(low=0.0, high=24.0)
        start_time = datetime(2018, 1, 1, hour, 0, 0)
        patient = T1DPatient.withName(self.patient_name, random_init_bg=True, seed=seed4)
        sensor = CGMSensor.withName(self.SENSOR_HARDWARE, seed=seed2)
        scenario = RandomScenario(start_time=start_time, seed=seed3)
        pump = InsulinPump.withName(self.INSULIN_PUMP_HARDWARE)
        env = _T1DSimEnv(patient, sensor, pump, scenario)
        return env, seed2, seed3, seed4
Exemple #8
0
    def seed(self, seed=None):
        """
        @brief      Specify the seed of the environment.

        @details    Note that it also resets the low-level Jiminy engine.
                    One must call the `reset` method manually afterward.

        @param[in]  seed    non-negative integer.
                            Optional: A strongly random seed will be generated by gym if omitted.

        @return     Updated seed of the environment
        """
        # Generate a 8 bytes (uint64) seed using gym utils
        self.rg, self._seed = seeding.np_random(seed)

        # Convert it into a 4 bytes uint32 seed.
        # Note that hashing is used to get rid off possible
        # correlation in the presence of concurrency.
        self._seed = np.uint32(
            seeding._int_list_from_bigint(seeding.hash_seed(self._seed))[0])

        # Reset the seed of Jiminy Engine, if available
        if self.engine_py is not None:
            self.engine_py.seed(self._seed)

        return [self._seed]
 def seed(self, seed=None):
     if seed is None:
         self.seed_ = create_seed()
         random.seed(self.seed_)
     else:
         self.seed_ = hash_seed(seed)
         random.seed(self.seed_)
Exemple #10
0
 def seed(self, seed=None):
     if self.benchmark_mode:
         initial_seed = 42
     else:
         initial_seed = seeding.hash_seed(seed) % 2 ** 32
     self._random_state = np.random.RandomState(seed=initial_seed)
     return [initial_seed]
Exemple #11
0
    def seed(self, seed=None):
        """
        Derives a random seed.
        """
        self.np_random, seed1 = seeding.np_random(seed)
        seed2 = seeding.hash_seed(seed1 + 1) % 2**31

        return [seed1, seed2]
Exemple #12
0
    def seed(self, seed=None):
        print('_seed called')
        self.np_random, seed1 = seeding.np_random(seed=seed)
        # Derive a random seed. This gets passed as a uint, but gets
        # checked as an int elsewhere, so we need to keep it below
        # 2**31.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**31
        seed3 = seeding.hash_seed(seed2 + 1) % 2**31

        hour = self.np_random.randint(low=0.0, high=24.0)
        start_time = datetime(2021, 1, 1, hour, 0, 0)
        patient = T1DPatient.withName(self.patient_name)
        sensor = CGMSensor.withName(self.SENSOR_HARDWARE, seed=seed2)
        scenario = RandomScenario(start_time=start_time, seed=seed3)
        pump = InsulinPump.withName(self.INSULIN_PUMP_HARDWARE)
        self.env = _T1DSimEnv(patient, sensor, pump, scenario)
        return [seed1, seed2, seed3]
 def seed(self, seed=None):
     """Set seed for the environment random generations."""
     self.np_random, seed1 = seeding.np_random(seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31. Takem from atari_env.py
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     self.sim.seed(seed2)
     return [seed1, seed2]
Exemple #14
0
    def _launch_fceux(self):
        # Making sure ROM file is valid
        if '' == self.rom_path or not os.path.isfile(self.rom_path):
            raise gym.error.Error('Unable to find ROM. Please download the game from the web and configure the rom path by ' +
                                  'calling env.configure(rom_path=path_to_file)')

        # Creating pipes
        self._create_pipes()

        # Creating temporary lua file
        self.temp_lua_path = os.path.join('/tmp', str(seeding.hash_seed(None) % 2 ** 32) + '.lua')
        temp_lua_file = open(self.temp_lua_path, 'w', 1)
        for k, v in list(self.launch_vars.items()):
            temp_lua_file.write('%s = "%s";\n' % (k, v))
        i = 0
        for script in self.lua_path:
            temp_lua_file.write('f_%d = assert (loadfile ("%s"));\n' % (i, script))
            temp_lua_file.write('f_%d ();\n' % i)
            i += 1
        temp_lua_file.close()

        # Resetting variables
        self.last_frame = 0
        self.reward = 0
        self.episode_reward = 0
        self.is_finished = False
        self.screen = np.zeros(shape=(self.screen_height, self.screen_width, 3), dtype=np.uint8)
        self._reset_info_vars()

        # Loading fceux
        args = [FCEUX_PATH]
        args.extend(self.cmd_args[:])
        args.extend(['--loadlua', self.temp_lua_path])
        args.append(self.rom_path)
        args.extend(['>/dev/null', '2>/dev/null', '&'])
        self.subprocess = subprocess.Popen("/bin/bash", shell=False, universal_newlines=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)                             
        stdout, stderr = self.subprocess.communicate(' '.join(args) + "\necho $!")
        self.fceux_pid = int(stdout)

        if 0 == self.subprocess.returncode:
            self.is_initialized = 1
            if not self.disable_out_pipe:
                with self.lock_out:
                    try:
                        self.pipe_out = open(self.path_pipe_out, 'w', 1)
                    except IOError:
                        self.pipe_out = None
            # Removing lua file
            sleep(1)  # Sleeping to make sure fceux has time to load file before removing
            if os.path.isfile(self.temp_lua_path):
                try:
                    os.remove(self.temp_lua_path)
                except OSError:
                    pass
        else:
            self.is_initialized = 0
            raise gym.error.Error('Unable to start fceux. Command: %s' % (' '.join(args)))
Exemple #15
0
    def _seed(self, seed=None):
        np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**32
        self.game.set_seed(seed2)

        # 3 allowed actions [12, 13, 14] (must match .cfg file)
        self.action_space = spaces.HighLow(np.matrix([[0, 1, 0]] * 3), np_random=np_random)
        self.observation_space = spaces.Box(low=0, high=255, shape=(self.screen_height, self.screen_width, 3), np_random=np_random)
        return [seed1, seed2]
Exemple #16
0
    def _seed(self, seed=None):
        np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**32
        self.game.set_seed(seed2)

        # action indexes are [0, 9, 10, 12, 13, 14]
        self.action_space = spaces.HighLow(np.matrix([[0, 1, 0]] * 6), np_random=np_random)
        self.observation_space = spaces.Box(low=0, high=255, shape=(self.screen_height, self.screen_width, 3), np_random=np_random)
        return [seed1, seed2]
Exemple #17
0
 def _seed(self, seed=None):
     self.np_random, seed1 = seeding.np_random(seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     # Empirically, we need to seed before loading the ROM.
     self.ale.setInt(b'random_seed', seed2)
     self.ale.loadROM(self.game_path)
     return [seed1, seed2]
Exemple #18
0
 def seed(self, seed=None):
     self.np_random, seed1 = seeding.np_random(seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     # Empirically, we need to seed before loading the ROM.
     self.ale.setInt(b'random_seed', seed2)
     self.ale.loadROM(self.game_path)
     return [seed1, seed2]
Exemple #19
0
    def _seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**32
        pachi_py.pachi_srand(seed2)

        shape = pachi_py.CreateBoard(self.board_size).encode().shape
        self.observation_space = spaces.Box(np.zeros(shape), np.ones(shape), np_random=self.np_random)
        # One action for each board position, pass, and resign
        self.action_space = spaces.Discrete(self.board_size**2 + 2, np_random=self.np_random)
        return [seed1, seed2]
Exemple #20
0
 def seed(self, seed=None, id=0):
     _, seed1 = seeding.np_random(seed)
     if id > 0:
         seed = seed * 100 + id
     self.np_random, _ = seeding.np_random(seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     # Empirically, we need to seed before loading the ROM.
     self.ale.setInt(b'random_seed', seed2)
 def seed(self, seed: Optional[int] = None):
     r"""Define random number generators for different aspects of
     the environment.
     """
     seed = seeding.hash_seed(seed, max_bytes=2)
     self._rng = random.Random()
     self._rng_read = random.Random()
     self._rng_np = np.random.RandomState()
     self._rng.seed(seed)
     self._rng_read.seed(seed)
     self._rng_np.seed(seed)
def get_experiment_environment(**args):
    from utils import setup_mpi_gpus, setup_tensorflow_session
    from baselines.common import set_global_seeds
    from gym.utils.seeding import hash_seed
    process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank()
    process_seed = hash_seed(process_seed, max_bytes=4)
    set_global_seeds(process_seed)
    setup_mpi_gpus()

    tf_context = setup_tensorflow_session()
    return tf_context
Exemple #23
0
def get_experiment_environment(**args):
    from utils import setup_tensorflow_session
    from baselines.common import set_global_seeds
    from gym.utils.seeding import hash_seed
    process_seed = args["seed"] + 1000 * 0
    process_seed = hash_seed(process_seed, max_bytes=4)
    set_global_seeds(process_seed)

    logger_context = logger.scoped_configure(
        dir=None, format_strs=['stdout', 'log', 'csv'])
    tf_context = setup_tensorflow_session()
    return logger_context, tf_context
Exemple #24
0
    def seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed. This gets passed as a uint, but gets
        # checked as an int elsewhere, so we need to keep it below
        # 2**31. * 2
        seed2 = seeding.hash_seed(seed1 + 1)
        # Empirically, we need to seed before loading the ROM (ignoring this for now in our case).
        # return [seed1, seed2]

        self.state = None
        self.last_pop = 0
        assert self.micro.map.getMapState().shape
 def _seed(self, seed=None):
   self.ale.setFloat(b'repeat_action_probability', options.repeat_action_probability)
   from gym.utils import seeding
   self.np_random, seed1 = seeding.np_random(seed)
   # Derive a random seed. This gets passed as a uint, but gets
   # checked as an int elsewhere, so we need to keep it below
   # 2**31.
   seed2 = seeding.hash_seed(seed1 + 1) % 2 ** 31
   # Empirically, we need to seed before loading the ROM.
   self.ale.setInt(b'random_seed', seed2)
   self.ale.loadROM(self.game_path)
   return [seed1, seed2]
 def _seed(self, seed=None):
     self.ale.setFloat(b'repeat_action_probability',
                       options.repeat_action_probability)
     from gym.utils import seeding
     self.np_random, seed1 = seeding.np_random(seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     # Empirically, we need to seed before loading the ROM.
     self.ale.setInt(b'random_seed', seed2)
     self.ale.loadROM(self.game_path)
     return [seed1, seed2]
    def _create_pipes(self):
        # Creates named pipe for inter-process communication
        self.pipe_name = seeding.hash_seed(None) % 2 ** 32
        self.launch_vars['pipe_name'] = self.pipe_name
        if not self.disable_out_pipe:
            self.path_pipe_out = '%s-out.%d' % (self.path_pipe_prefix, self.pipe_name)
            os.mkfifo(self.path_pipe_out)

        # Launching a thread that will listen to incoming pipe
        # Thread exits if self.is_exiting = 1 or pipe_in is closed
        if not self.disable_in_pipe:
            thread_incoming = Thread(target=self._listen_to_incoming_pipe, kwargs={'pipe_name': self.pipe_name})
            thread_incoming.start()
Exemple #28
0
    def _seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**32
        pachi_py.pachi_srand(seed2)

        shape = pachi_py.CreateBoard(self.board_size).encode().shape
        self.observation_space = spaces.Box(np.zeros(shape),
                                            np.ones(shape),
                                            np_random=self.np_random)
        # One action for each board position, pass, and resign
        self.action_space = spaces.Discrete(self.board_size**2 + 2,
                                            np_random=self.np_random)
        return [seed1, seed2]
Exemple #29
0
def get_experiment_environment(**args):
    process_seed = 1234 + 1000 * MPI.COMM_WORLD.Get_rank()
    process_seed = hash_seed(process_seed, max_bytes=4)
    set_global_seeds(1234)
    setup_mpi_gpus()

    logger_context = logger.scoped_configure(
        dir='C:/Users/Elias/Desktop/savedunc/' + MODE + '_' +
        datetime.now().strftime('%Y_%m_%d_%H_%M_%S'),
        format_strs=['stdout', 'log', 'csv', 'tensorboard']
        if MPI.COMM_WORLD.Get_rank() == 0 else ['log'])

    tf_context = setup_tensorflow_session()
    return logger_context, tf_context
Exemple #30
0
 def seed(self, mode=1, seed=None):
     self.np_random, seed1 = seeding.np_random(seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     # Empirically, we need to seed before loading the ROM.
     self.ale.setInt(b'random_seed', seed2)
     self.ale.loadROM(self.game_path)
     # set the mode, removing 1 from the number
     # 1 is removed so the user can use the number from the manual
     # mode 1 in the manual is mode 0 in the code
     self.ale.setMode(mode - 1)
     return [seed1, seed2]
Exemple #31
0
def get_experiment_environment(**args):
    from curiosity.utils import setup_mpi_gpus, setup_tensorflow_session
    from baselines.common import set_global_seeds
    from gym.utils.seeding import hash_seed
    process_seed = args["seed"] + 1000 * MPI.COMM_WORLD.Get_rank()
    process_seed = hash_seed(process_seed, max_bytes=4)
    set_global_seeds(process_seed)
    setup_mpi_gpus()

    logger_context = logger.scoped_configure(dir=None,
                                             format_strs=['stdout', 'log',
                                                          'csv'] if MPI.COMM_WORLD.Get_rank() == 0 else ['log'])
    tf_context = setup_tensorflow_session()
    return logger_context, tf_context
Exemple #32
0
 def seed(self, seed=None):
     """
     This is totally the implementation in AtariEnv in openai/gym.
     """
     self.np_random, seed1 = seeding.np_random(seed)
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     # Toybox takes a uint seed, but we're copying the ALE seed for reasons above.
     # They're unclear who checks, so being safe here.
     seed2 = seeding.hash_seed(seed1 + 1) % 2**31
     self.toybox.set_seed(seed2)
     # Start a new game to ensure that the seed gets used!.
     self.toybox.new_game()
     return [seed1, seed2]
Exemple #33
0
    def _seed(self, seed=None):
        np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**32
        self.game.set_seed(seed2)

        # 3 allowed actions [12, 13, 14] (must match .cfg file)
        self.action_space = spaces.HighLow(np.matrix([[0, 1, 0]] * 3),
                                           np_random=np_random)
        self.observation_space = spaces.Box(low=0,
                                            high=255,
                                            shape=(self.screen_height,
                                                   self.screen_width, 3),
                                            np_random=np_random)
        return [seed1, seed2]
Exemple #34
0
    def _seed(self, seed=None):
        np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**32
        self.game.set_seed(seed2)

        # action indexes are [0, 9, 10, 12, 13, 14]
        self.action_space = spaces.HighLow(np.matrix([[0, 1, 0]] * 6),
                                           np_random=np_random)
        self.observation_space = spaces.Box(low=0,
                                            high=255,
                                            shape=(self.screen_height,
                                                   self.screen_width, 3),
                                            np_random=np_random)
        return [seed1, seed2]
Exemple #35
0
 def _create_env_from_random_state(self):
     #print('_create_env_from_random_state simglucose extended observation')
     # Derive a random seed. This gets passed as a uint, but gets
     # checked as an int elsewhere, so we need to keep it below
     # 2**31.
     seed2 = seeding.hash_seed(self.np_random.randint(0, 1000)) % 2**31
     seed3 = seeding.hash_seed(seed2 + 1) % 2**31
     seed4 = seeding.hash_seed(seed3 + 1) % 2**31
     hour = self.np_random.randint(low=0.0, high=24.0)
     if self.saved_state is not None:
        seed2=self.saved_state[0]
        seed3=self.saved_state[1]
        seed4=self.saved_state[2]
        hour=self.saved_state[3]
        print('Using state', seed2, seed3, seed4, hour)
     start_time = datetime(2021, 1, 1, hour, 0, 0)
     patient = T1DPatient.withName(self.patient_name, random_init_bg=True, seed=seed4)
     sensor = CGMSensor.withName(self.SENSOR_HARDWARE, seed=seed2)
     scenario = RandomScenario(start_time=start_time, seed=seed3)
     pump = InsulinPump.withName(self.INSULIN_PUMP_HARDWARE)
     env = _T1DSimEnvExtendedObs(patient, sensor, pump, scenario,n_samples=self._n_samples, append_action=self.append_action )
     self.time_per_step=int(sensor.sample_time)
     self.time_in_env=0
     return env, seed2, seed3, seed4, hour
Exemple #36
0
    def _seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        # Derive a random seed. This gets passed as a uint, but gets
        # checked as an int elsewhere, so we need to keep it below
        # 2**31.
        seed2 = seeding.hash_seed(seed1 + 1) % 2**31
        # Empirically, we need to seed before loading the ROM.
        self.ale.setInt(b'random_seed', seed2)
        self.ale.loadROM(self.game_path)
        self._action_set = self.ale.getMinimalActionSet()

        self.action_space = spaces.Discrete(len(self._action_set), np_random=self.np_random)

        (screen_width,screen_height) = self.ale.getScreenDims()
        if self._obs_type == 'ram':
            self.observation_space = spaces.Box(low=np.zeros(128), high=np.zeros(128)+255, np_random=self.np_random)
        elif self._obs_type == 'image':
            self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3), np_random=self.np_random)
        else:
            raise error.Error('Unrecognized observation type: {}'.format(self._obs_type))
        return [seed1, seed2]
 def _seed(self, seed=None):
     seed = seed if seed else seeding.hash_seed(seed) % 2**32
     random.seed(seed)
     return [seed]
Exemple #38
0
 def _seed(self, seed=None):
     self.np_random, seed1 = seeding.np_random(seed)
     # Derive a random seed.
     seed2 = seeding.hash_seed(seed1 + 1) % 2 ** 32
     pachi_py.pachi_srand(seed2)
     return [seed1, seed2]
Exemple #39
0
 def _seed(self, seed=None):
     seed = seeding.hash_seed(seed) % 2**32
     self.game.set_seed(seed)
     return [seed]
 def seed(self, seed=None):
     self.np_random, seed1 = seeding.np_random(seed)
     seed2 = seeding.hash_seed(seed1 + 1) % 2 ** 31
     return [seed1, seed2]
 def _seed(self, seed=None):
     # Derive a random seed.
     seed = seeding.hash_seed(seed) % 2**32
     self.game.set_seed(seed)
     return [seed]
 def _seed(self, seed=None):
     self.curr_seed = seeding.hash_seed(seed) % 2 ** 32
     return [self.curr_seed]