def test_custom_space_sync_vector_env(): env_fns = [make_custom_space_env(i) for i in range(4)] try: env = SyncVectorEnv(env_fns) reset_observations = env.reset() assert isinstance(env.single_action_space, CustomSpace) assert isinstance(env.action_space, Tuple) actions = ("action-2", "action-3", "action-5", "action-7") step_observations, rewards, dones, _ = env.step(actions) finally: env.close() assert isinstance(env.single_observation_space, CustomSpace) assert isinstance(env.observation_space, Tuple) assert isinstance(reset_observations, tuple) assert reset_observations == ("reset", "reset", "reset", "reset") assert isinstance(step_observations, tuple) assert step_observations == ( "step(action-2)", "step(action-3)", "step(action-5)", "step(action-7)", )
def test_step_sync_vector_env(use_single_action_space): env_fns = [make_env('CubeCrash-v0', i) for i in range(8)] try: env = SyncVectorEnv(env_fns) observations = env.reset() if use_single_action_space: actions = [env.single_action_space.sample() for _ in range(8)] else: actions = env.action_space.sample() observations, rewards, dones, _ = env.step(actions) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8, ) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(rewards, np.ndarray) assert isinstance(rewards[0], (float, np.floating)) assert rewards.ndim == 1 assert rewards.size == 8 assert isinstance(dones, np.ndarray) assert dones.dtype == np.bool_ assert dones.ndim == 1 assert dones.size == 8
def test_reset_sync_vector_env(): env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = SyncVectorEnv(env_fns) observations = env.reset() finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape del observations try: env = SyncVectorEnv(env_fns) observations = env.reset(return_info=False) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape del observations env_fns = [make_env("CartPole-v1", i) for i in range(8)] try: env = SyncVectorEnv(env_fns) observations, infos = env.reset(return_info=True) finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8,) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape assert isinstance(infos, list) assert all([isinstance(info, dict) for info in infos])
def test_reset_sync_vector_env(): env_fns = [make_env('CubeCrash-v0', i) for i in range(8)] try: env = SyncVectorEnv(env_fns) observations = env.reset() finally: env.close() assert isinstance(env.observation_space, Box) assert isinstance(observations, np.ndarray) assert observations.dtype == env.observation_space.dtype assert observations.shape == (8, ) + env.single_observation_space.shape assert observations.shape == env.observation_space.shape
def main(): np.set_printoptions(suppress=True, formatter={'float_kind': '{:0.2f}'.format}) env_fns = [make_env('MountainCar-v0', i) for i in range(4)] try: env = SyncVectorEnv(env_fns) finally: env.close() state_size = env.observation_space.shape[1] action_size = env.action_space[0].n NUM_EPISODES = 1000 STEPS_PER_EPISODE = 200 batch_size = 32 eps_mean_reward = [0.0] * NUM_EPISODES agent = DQNAgent(state_size, action_size) start_time = datetime.now() for ep_count in range(NUM_EPISODES): episode_rew = 0 state = env.reset() if (ep_count == 0): print("ep={} state.shape={}".format(ep_count, state.shape)) #state = np.reshape(state, [-1, state_size]) ep_start_time = datetime.now() for time in range(STEPS_PER_EPISODE): # env.render() action = agent.act(state) next_state, reward, done, _ = env.step(action) episode_rew += np.sum(reward) #next_state = np.reshape(next_state, [-1, state_size]) if (time == 0): print("ep={} time={} action.len={} next_state.shape={} elaps_time={}".format( \ ep_count, time, len(action), next_state.shape, (datetime.now() - ep_start_time)) ) #add to DQN buffer for idx in range(0, env.num_envs): agent.memorize(state[idx], action[idx], reward[idx], next_state[idx], done[idx]) state = next_state if time >= STEPS_PER_EPISODE - 1: eps_mean_reward[ep_count] = np.mean(episode_rew) / time print("ep: {}/{}, mean_avg_reward: {}, exec_time= {}".format( \ ep_count , NUM_EPISODES, eps_mean_reward[ep_count], (datetime.now() - ep_start_time))) #update DQN model if there are enough samples if len(agent.memory) > batch_size and time % 8 == 0: agent.replay(batch_size) #if ep_count % 2 == 0: # agent.save(str(os.path.join(save_path,'ma-foraging-dqn.h5'))) print("Finish train DQN Agent with {} episodes in {}".format( NUM_EPISODES, (datetime.now() - start_time)))
def test_vector_env_equal(shared_memory): env_fns = [make_env("CubeCrash-v0", i) for i in range(4)] num_steps = 100 try: async_env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) sync_env = SyncVectorEnv(env_fns) async_env.seed(0) sync_env.seed(0) assert async_env.num_envs == sync_env.num_envs assert async_env.observation_space == sync_env.observation_space assert async_env.single_observation_space == sync_env.single_observation_space assert async_env.action_space == sync_env.action_space assert async_env.single_action_space == sync_env.single_action_space async_observations = async_env.reset() sync_observations = sync_env.reset() assert np.all(async_observations == sync_observations) for _ in range(num_steps): actions = async_env.action_space.sample() assert actions in sync_env.action_space # fmt: off async_observations, async_rewards, async_dones, async_infos = async_env.step( actions) sync_observations, sync_rewards, sync_dones, sync_infos = sync_env.step( actions) # fmt: on for idx in range(len(sync_dones)): if sync_dones[idx]: assert "terminal_observation" in async_infos[idx] assert "terminal_observation" in sync_infos[idx] assert sync_dones[idx] assert np.all(async_observations == sync_observations) assert np.all(async_rewards == sync_rewards) assert np.all(async_dones == sync_dones) finally: async_env.close() sync_env.close()
def test_custom_space_sync_vector_env(): env_fns = [make_custom_space_env(i) for i in range(4)] try: env = SyncVectorEnv(env_fns) reset_observations = env.reset() actions = ('action-2', 'action-3', 'action-5', 'action-7') step_observations, rewards, dones, _ = env.step(actions) finally: env.close() assert isinstance(env.single_observation_space, CustomSpace) assert isinstance(env.observation_space, Tuple) assert isinstance(reset_observations, tuple) assert reset_observations == ('reset', 'reset', 'reset', 'reset') assert isinstance(step_observations, tuple) assert step_observations == ('step(action-2)', 'step(action-3)', 'step(action-5)', 'step(action-7)')
def test_call_sync_vector_env(): env_fns = [make_env("CartPole-v1", i) for i in range(4)] try: env = SyncVectorEnv(env_fns) _ = env.reset() images = env.call("render", mode="rgb_array") gravity = env.call("gravity") finally: env.close() assert isinstance(images, tuple) assert len(images) == 4 for i in range(4): assert isinstance(images[i], np.ndarray) assert isinstance(gravity, tuple) assert len(gravity) == 4 for i in range(4): assert isinstance(gravity[i], float) assert gravity[i] == 9.8
def test_vector_env_equal(shared_memory): env_fns = [make_env("CartPole-v1", i) for i in range(4)] num_steps = 100 try: async_env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) sync_env = SyncVectorEnv(env_fns) assert async_env.num_envs == sync_env.num_envs assert async_env.observation_space == sync_env.observation_space assert async_env.single_observation_space == sync_env.single_observation_space assert async_env.action_space == sync_env.action_space assert async_env.single_action_space == sync_env.single_action_space async_observations = async_env.reset(seed=0) sync_observations = sync_env.reset(seed=0) assert np.all(async_observations == sync_observations) for _ in range(num_steps): actions = async_env.action_space.sample() assert actions in sync_env.action_space # fmt: off async_observations, async_rewards, async_dones, async_infos = async_env.step( actions) sync_observations, sync_rewards, sync_dones, sync_infos = sync_env.step( actions) # fmt: on if any(sync_dones): assert "terminal_observation" in async_infos assert "_terminal_observation" in async_infos assert "terminal_observation" in sync_infos assert "_terminal_observation" in sync_infos assert np.all(async_observations == sync_observations) assert np.all(async_rewards == sync_rewards) assert np.all(async_dones == sync_dones) finally: async_env.close() sync_env.close()
def test_vector_env_equal(shared_memory): env_fns = [make_env('CubeCrash-v0', i) for i in range(4)] num_steps = 100 try: async_env = AsyncVectorEnv(env_fns, shared_memory=shared_memory) sync_env = SyncVectorEnv(env_fns) async_env.seed(0) sync_env.seed(0) assert async_env.num_envs == sync_env.num_envs assert async_env.observation_space == sync_env.observation_space assert async_env.single_observation_space == sync_env.single_observation_space assert async_env.action_space == sync_env.action_space assert async_env.single_action_space == sync_env.single_action_space async_observations = async_env.reset() sync_observations = sync_env.reset() assert np.all(async_observations == sync_observations) for _ in range(num_steps): actions = async_env.action_space.sample() assert actions in sync_env.action_space async_observations, async_rewards, async_dones, _ = async_env.step( actions) sync_observations, sync_rewards, sync_dones, _ = sync_env.step( actions) assert np.all(async_observations == sync_observations) assert np.all(async_rewards == sync_rewards) assert np.all(async_dones == sync_dones) finally: async_env.close() sync_env.close()