def test_goal_properties(): """ Basic property tests """ goal = Goal() assert goal.transparent assert not goal.blocks assert goal.color == Color.NONE assert not goal.can_be_picked_up assert goal.state_index == 0 assert goal.can_be_represented_in_state() assert goal.render_as_char() == 'G' assert goal.num_states() == 1
def make_goal_state(agent_on_goal: bool) -> State: """makes a simple state with a wall in front of the agent""" grid = Grid(2, 1) grid[0, 0] = Goal() agent_position = (0, 0) if agent_on_goal else (1, 0) agent = Agent(agent_position, Orientation.N) return State(grid, agent)
def match_key_color( *, rng: Optional[rnd.Generator] = None, # pylint: disable=unused-argument ) -> State: """the agent has to pick the correct key to open a randomly colored door""" rng = get_gv_rng_if_none(rng) # necessary to use rng object! # only consider these colors colors = [Color.RED, Color.GREEN, Color.BLUE, Color.YELLOW] # randomly choose location of keys key1, key2, key3, key4 = rng.permute([Key(color) for color in colors]) # randomly choose color of door door = Door(Door.Status.LOCKED, rng.choice(colors)) # grids can be constructed directly from objects grid = Grid.from_objects([ [Wall(), Wall(), Wall(), Wall(), Wall()], [Wall(), Wall(), Goal(), Wall(), Wall()], [Wall(), Wall(), door, Wall(), Wall()], [Wall(), key1, Floor(), key2, Wall()], [Wall(), key3, Floor(), key4, Wall()], [Wall(), Wall(), Wall(), Wall(), Wall()], ]) # positioning the agent in the above grid agent = Agent((4, 2), Orientation.N) return State(grid, agent)
def test_grid_object_types(): grid = Grid(3, 4) assert grid.object_types() == set([Floor]) grid[0, 0] = Wall() assert grid.object_types() == set([Floor, Wall]) grid[0, 0] = Goal() assert grid.object_types() == set([Floor, Goal]) grid[1, 1] = Wall() assert grid.object_types() == set([Floor, Goal, Wall])
def simplest_reset( *, rng: Optional[rnd.Generator] = None, # pylint: disable=unused-argument ) -> State: """smallest possible room with goal right in front of agent""" # constructed the grid directly from objects grid = Grid.from_objects([ [Wall(), Wall(), Wall()], [Wall(), Goal(), Wall()], [Wall(), Floor(), Wall()], [Wall(), Wall(), Wall()], ]) # positioning the agent in the above grid agent = Agent((2, 1), Orientation.N) return State(grid, agent)
def reset_empty( height: int, width: int, random_agent: bool = False, random_goal: bool = False, *, rng: Optional[rnd.Generator] = None, ) -> State: """An empty environment""" if height < 4 or width < 4: raise ValueError('height and width need to be at least 4') rng = get_gv_rng_if_none(rng) # TODO test creation (e.g. count number of walls, goals, check held item) grid = Grid(height, width) draw_wall_boundary(grid) if random_goal: goal_y = rng.integers(1, height - 2, endpoint=True) goal_x = rng.integers(1, width - 2, endpoint=True) else: goal_y = height - 2 goal_x = width - 2 grid[goal_y, goal_x] = Goal() if random_agent: agent_position = rng.choice([ position for position in grid.positions() if isinstance(grid[position], Floor) ]) agent_orientation = rng.choice(list(Orientation)) else: agent_position = (1, 1) agent_orientation = Orientation.E agent = Agent(agent_position, agent_orientation) return State(grid, agent)
def reset_rooms( # pylint: disable=too-many-locals height: int, width: int, layout: Tuple[int, int], *, rng: Optional[rnd.Generator] = None, ) -> State: rng = get_gv_rng_if_none(rng) # TODO test creation (e.g. count number of walls, goals, check held item) layout_height, layout_width = layout y_splits = np.linspace( 0, height - 1, num=layout_height + 1, dtype=int, ) if len(y_splits) != len(set(y_splits)): raise ValueError( f'insufficient height ({height}) for layout ({layout})') x_splits = np.linspace( 0, width - 1, num=layout_width + 1, dtype=int, ) if len(x_splits) != len(set(x_splits)): raise ValueError( f'insufficient width ({height}) for layout ({layout})') grid = Grid(height, width) draw_room_grid(grid, y_splits, x_splits, Wall) # passages in horizontal walls for y in y_splits[1:-1]: for x_from, x_to in mitt.pairwise(x_splits): x = rng.integers(x_from + 1, x_to) grid[y, x] = Floor() # passages in vertical walls for y_from, y_to in mitt.pairwise(y_splits): for x in x_splits[1:-1]: y = rng.integers(y_from + 1, y_to) grid[y, x] = Floor() # sample agent and goal positions agent_position, goal_position = rng.choice( [ position for position in grid.positions() if isinstance(grid[position], Floor) ], size=2, replace=False, ) agent_orientation = rng.choice(list(Orientation)) grid[goal_position] = Goal() agent = Agent(agent_position, agent_orientation) return State(grid, agent)
def make_5x5_goal_state() -> State: """makes a simple 5x5 state with goal object in the middle""" grid = Grid(5, 5) grid[2, 2] = Goal() agent = Agent((0, 0), Orientation.N) return State(grid, agent)